Back to Search
Start Over
Analysis of nitroxide spin label motion in a protein-protein complex using multiple frequency EPR spectroscopy
- Publication Year :
- 2016
-
Abstract
- X- and W-band EPR spectra, at room and low temperatures, are reported for nitroxide spin labels attached to cysteine residues selectively introduced into two proteins, the DNase domain of colicin-E9 and its immunity protein, Im9. The dynamics of each site of attachment on the individual proteins and in the tight DNase-Im9 complex have been analysed by computer simulations of the spectra using a model of Brownian dynamics trajectories for the spin label and protein. Ordering potentials have been introduced to describe mobility of labels restricted by the protein domain. Label mobility varies with position from completely immobilised, to motionally restricted and to freely rotating. Bi-modal dynamics of the spin label have been observed for several sites. We show that W-band spectra are particularly useful for detection of anisotropy of spin label motion. On complex formation significant changes are observed in the dynamics of labels at the binding interface region. This work reveals multi-frequency EPR as a sensitive and valuable tool for detecting conformational changes in protein structure and dynamics especially in protein-protein complexes.
- Subjects :
- Models, Molecular
Nuclear and High Energy Physics
Nitroxide mediated radical polymerization
Protein Conformation
Protein domain
Biophysics
Colicins
Biochemistry
law.invention
Protein structure
law
Computer Simulation
Electron paramagnetic resonance
Spin label
Spin-½
Binding Sites
Deoxyribonucleases
Chemistry
Escherichia coli Proteins
Electron Spin Resonance Spectroscopy
Site-directed spin labeling
Condensed Matter Physics
Crystallography
Models, Chemical
Brownian dynamics
Nitrogen Oxides
Spin Labels
Protein Binding
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....60453f0681a8c37334b6b167a7864f34
- Full Text :
- https://doi.org/10.1016/j.jmr.2006.12.009