Back to Search Start Over

Formation of nitrogenous disinfection byproducts in MP UV-based water treatments of natural organic matters: The role of nitrate

Authors :
Minkyu Park
Shane A. Snyder
Xiang-Zhou Meng
Shawn C. Beitel
Xiao Liu
Christiane Hoppe-Jones
Source :
Water research. 204
Publication Year :
2021

Abstract

UV-based water treatment processes have been reported to induce genotoxicity during the treatments of surface water, drinking water and artificial water with natural organic matters (NOMs), causing genotoxicity concerns for the drinking water safety. Nitrogenous disinfection byproducts (N-DBPs) were generally reported to be much more genotoxic than their non-nitrogenous analogues, and might be responsible for the genotoxicity in UV processes. Although nitrate-rich water was getting attention for the possibility of genotoxicity and N-DBPs during UV treatments, the impact mechanism of nitrate on the degradation of NOMs, the formation of N-DBPs and genotoxicity has not been explicated. Here simulation experiments of NOM degradation under medium-pressure (MP) UV and MP UV/H2O2 treatments were conducted to explore the effect of nitrate on the molecular characteristics of NOM, the nitrate-derived N-DBPs and the potential genotoxicity through non-targeted analysis and CALUX® reporter gene assays. The results showed that nitrate can accelerate the degradation of NOMs in the MP UV process but inhibit the degradation of NOMs in the MP UV/H2O2 process. During the degradation of NOMs, the molecular compositions varied by the effect of nitrate on oxygen atoms, molecule analogs, and saturation. A total of 105 and 374 nitrate-derived N-DBPs were identified in the MP UV and MP UV/H2O2 treatment, respectively. Most of these N-DBPs contain one nitrogen atom, and the representative features are nitro-, methoxy- (or hydroxyl-) and ester- groups on benzene. No genotoxicity was observed without nitrate spiking, whereas genotoxicity was induced after both MP UV and MP UV/H2O2 treatments when nitrate was spiked, which is worthy of attention for the drinking water safety management.

Details

ISSN :
18792448
Volume :
204
Database :
OpenAIRE
Journal :
Water research
Accession number :
edsair.doi.dedup.....611b93ac7cdb0936ca412f381d4ea5d1