Back to Search
Start Over
Broadband, millimeter-wave antireflection coatings for large-format, cryogenic aluminum oxide optics
- Publication Year :
- 2019
- Publisher :
- arXiv, 2019.
-
Abstract
- We present two prescriptions for broadband (~77 - 252 GHz), millimeter-wave antireflection coatings for cryogenic, sintered polycrystalline aluminum oxide optics: one for large-format (700 mm diameter) planar and plano-convex elements, the other for densely packed arrays of quasi-optical elements, in our case 5 mm diameter half-spheres (called "lenslets"). The coatings comprise three layers of commercially-available, polytetrafluoroethylene-based, dielectric sheet material. The lenslet coating is molded to fit the 150 mm diameter arrays directly while the large-diameter lenses are coated using a tiled approach. We review the fabrication processes for both prescriptions then discuss laboratory measurements of their transmittance and reflectance. In addition, we present the inferred refractive indices and loss tangents for the coating materials and the aluminum oxide substrate. We find that at 150 GHz and 300 K the large-format coating sample achieves (97 +/- 2)% transmittance and the lenslet coating sample achieves (94 +/- 3)% transmittance.<br />Comment: 19 pages, 11 figures; submitted 05 Dec 2019, accepted 26 Feb 2020
- Subjects :
- Physics - Instrumentation and Detectors
Materials science
Fabrication
Oxide
FOS: Physical sciences
Dielectric
Substrate (electronics)
Lenslet
engineering.material
01 natural sciences
010309 optics
chemistry.chemical_compound
Optics
Coating
0103 physical sciences
Transmittance
Electrical and Electronic Engineering
Engineering (miscellaneous)
Instrumentation and Methods for Astrophysics (astro-ph.IM)
business.industry
Instrumentation and Detectors (physics.ins-det)
Atomic and Molecular Physics, and Optics
chemistry
engineering
Astrophysics - Instrumentation and Methods for Astrophysics
business
Refractive index
Subjects
Details
- ISSN :
- 1559128X
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....61332cdf197fe6222db70022f11eba43
- Full Text :
- https://doi.org/10.48550/arxiv.1912.04272