Back to Search Start Over

Synthesis of 2-deoxy-2-fluoro and 1,2-ene derivatives of the naturally occurring glycosidase inhibitor, salacinol, and their inhibitory activities against recombinant human maltase glucoamylase

Authors :
Lyann Sim
B. Mario Pinto
Niloufar Choubdar
David R. Rose
Source :
Carbohydrate research. 343(5)
Publication Year :
2008

Abstract

2-Deoxy-2-fluorosalacinol and a 1,2-ene derivative of the naturally occurring glycosidase inhibitor salacinol were synthesized for structure activity studies with human maltase glucoamylase (MGA). 2-Deoxy-2-fluorosalacinol was synthesized through the coupling reaction of 2-deoxy-2-fluoro-3,5-di-O-p-methoxybenzyl-1,4-anhydro-4-thio-D-arabinitol with 2,4-O-benzylidene-l-erythritol-1,3-cyclic sulfate in hexafluoroisopropanol (HFIP) containing 0.3 equiv of K(2)CO(3). Excess of K(2)CO(3) resulted in the elimination of HF from the coupled product, and the formation of an alkene derivative of salacinol. Nucleophilic attack of the 1,4-anhydro-4-thio-D-arabinitol moiety on the cyclic sulfate did not proceed in the absence of K(2)CO(3). No reaction was observed in acetonitrile containing K(2)CO(3). The target compounds were obtained by deprotection with TFA. The 2-deoxy-1-ene derivative of salacinol and 2-deoxy-2-fluorosalacinol inhibited recombinant human maltase glucoamylase, one of the key intestinal enzymes involved in the breakdown of glucose, with an IC(50) value of 150 microM and a K(i) value of 6+/-1 microM, respectively.

Details

ISSN :
00086215
Volume :
343
Issue :
5
Database :
OpenAIRE
Journal :
Carbohydrate research
Accession number :
edsair.doi.dedup.....61f3bb22c663b1a313d43ab5fcba031b