Back to Search Start Over

A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series

Authors :
Gilles Wainrib
Pierrick J. Arnal
Mathieu Galtier
Alexandre Gramfort
Stanislas Chambon
Laboratoire Traitement et Communication de l'Information ( LTCI )
Télécom ParisTech-Institut Mines-Télécom [Paris]-Université Paris-Saclay
School of Engineering and Science [Bremen] ( JU-SES )
Jacobs University [Bremen]
Département d'informatique de l'École normale supérieure ( DI-ENS )
École normale supérieure - Paris ( ENS Paris ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Centre National de la Recherche Scientifique ( CNRS )
Modelling brain structure, function and variability based on high-field MRI data ( PARIETAL )
Service NEUROSPIN ( NEUROSPIN )
Direction de Recherche Fondamentale (CEA) ( DRF (CEA) )
Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) ( DRF (CEA) )
Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria )
ANRT Grant 2015/1005
Laboratoire Traitement et Communication de l'Information (LTCI)
Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Rythm [Paris]
Département d'informatique - ENS Paris (DI-ENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Modelling brain structure, function and variability based on high-field MRI data (PARIETAL)
Service NEUROSPIN (NEUROSPIN)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
École normale supérieure - Paris (ENS Paris)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Département d'informatique de l'École normale supérieure (DI-ENS)
Source :
IEEE Transactions on Neural Systems and Rehabilitation Engineering, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2018, 26 (4), pp.17683810. 〈https://ieeexplore.ieee.org/document/8307462/〉. 〈10.1109/TNSRE.2018.2813138〉, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26 (4), pp.17683810. ⟨10.1109/TNSRE.2018.2813138⟩, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2018, 26 (4), pp.17683810. ⟨10.1109/TNSRE.2018.2813138⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Sleep stage classification constitutes an important preliminary exam in the diagnosis of sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30 s of signal a sleep stage, based on the visual inspection of signals such as electroencephalograms (EEG), electrooculograms (EOG), electrocardiograms (ECG) and electromyograms (EMG). We introduce here the first deep learning approach for sleep stage classification that learns end-to-end without computing spectrograms or extracting hand-crafted features, that exploits all multivariate and multimodal Polysomnography (PSG) signals (EEG, EMG and EOG), and that can exploit the temporal context of each 30 s window of data. For each modality the first layer learns linear spatial filters that exploit the array of sensors to increase the signal-to-noise ratio, and the last layer feeds the learnt representation to a softmax classifier. Our model is compared to alternative automatic approaches based on convolutional networks or decisions trees. Results obtained on 61 publicly available PSG records with up to 20 EEG channels demonstrate that our network architecture yields state-of-the-art performance. Our study reveals a number of insights on the spatio-temporal distribution of the signal of interest: a good trade-off for optimal classification performance measured with balanced accuracy is to use 6 EEG with 2 EOG (left and right) and 3 EMG chin channels. Also exploiting one minute of data before and after each data segment offers the strongest improvement when a limited number of channels is available. As sleep experts, our system exploits the multivariate and multimodal nature of PSG signals in order to deliver state-of-the-art classification performance with a small computational cost.

Subjects

Subjects :
FOS: Computer and information sciences
Computer science
Computer Vision and Pattern Recognition (cs.CV)
Computer Science - Computer Vision and Pattern Recognition
02 engineering and technology
Polysomnography
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
transfer learning
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
0302 clinical medicine
EMG
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Statistics - Machine Learning
0202 electrical engineering, electronic engineering, information engineering
EEG
[ INFO.INFO-NE ] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
multivariate time se
Sleep Stages
Signal processing
medicine.diagnostic_test
General Neuroscience
Rehabilitation
Electroencephalography
Signal Processing, Computer-Assisted
ries
Softmax function
020201 artificial intelligence & image processing
Neurons and Cognition (q-bio.NC)
Algorithms
[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing
Feature extraction
Biomedical Engineering
Expert Systems
Machine Learning (stat.ML)
EOG
03 medical and health sciences
Computer Systems
Internal Medicine
medicine
Humans
[ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI]
business.industry
Electromyography
Deep learning
Decision Trees
deep learning
Pattern recognition
Sleep stage classification
Data segment
Electrooculography
ComputingMethodologies_PATTERNRECOGNITION
Quantitative Biology - Neurons and Cognition
FOS: Biological sciences
spatio-temporal data
Multivariate Analysis
Spectrogram
Artificial intelligence
business
030217 neurology & neurosurgery

Details

Language :
English
ISSN :
15344320 and 15580210
Database :
OpenAIRE
Journal :
IEEE Transactions on Neural Systems and Rehabilitation Engineering, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2018, 26 (4), pp.17683810. 〈https://ieeexplore.ieee.org/document/8307462/〉. 〈10.1109/TNSRE.2018.2813138〉, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26 (4), pp.17683810. ⟨10.1109/TNSRE.2018.2813138⟩, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2018, 26 (4), pp.17683810. ⟨10.1109/TNSRE.2018.2813138⟩
Accession number :
edsair.doi.dedup.....6200721508d9448c03fb5d80432f0704
Full Text :
https://doi.org/10.1109/TNSRE.2018.2813138〉