Back to Search Start Over

Conservative and entropy controlled remap for multi-material ALE simulations with space-staggered schemes

Authors :
Alexandra Claisse
Patrick Le Tallec
Alexis Marbœuf
Centre d'Études de Limeil-Valenton (CEA-DAM)
Direction des Applications Militaires (DAM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Source :
Journal of Computational Physics, Journal of Computational Physics, Elsevier, 2019, 390, pp.66-92. ⟨10.1016/j.jcp.2019.04.017⟩, Journal of Computational Physics, 2019, 390, pp.66-92. ⟨10.1016/j.jcp.2019.04.017⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; The remapping strategy is crucial in any Arbitrary Lagrangian-Eulerian (ALE) algorithm based on a Lagrange-plus-remap paradigm. This step is particularly challenging for space-staggered schemes since inconsistencies may appear between cell centered and node centered fields after remap if no special care is taken [1], [2], [3]. We propose here a space-staggered remapping strategy focusing on conservation properties and entropy control. The proposed algorithm conserves mass, total energy and respects the Second Law of Thermodynamics (for robustness) up to round-off errors. This is achieved at a low computational cost by introducing a consistent, explicit and local post processing of the linear momentum after remap. This new method is then analyzed showing that the strict momentum conservation is sacrificed. It is now conserved to the scheme's order, such as entropy. Other classical properties such that the “DeBar consistency” [4], the continuity with the Lagrangian step and the monotonicity are also discussed. This work is developed in the context of the intersection-based (or overlay-based) remap. Therefore, the rezoned mesh does not have to be close to the Lagrangian one and, even if it is not considered here, our study can be easily extended to rezoning strategies which modify the mesh connectivity.

Details

Language :
English
ISSN :
00219991 and 10902716
Database :
OpenAIRE
Journal :
Journal of Computational Physics, Journal of Computational Physics, Elsevier, 2019, 390, pp.66-92. ⟨10.1016/j.jcp.2019.04.017⟩, Journal of Computational Physics, 2019, 390, pp.66-92. ⟨10.1016/j.jcp.2019.04.017⟩
Accession number :
edsair.doi.dedup.....621416d415683ed039a8ea5a9e26a533
Full Text :
https://doi.org/10.1016/j.jcp.2019.04.017⟩