Back to Search Start Over

Biclustering Algorithms Based on Metaheuristics: A Review

Authors :
José-García, Adán
Jacques, Julie
Sobanski, Vincent
Dhaenens, Clarisse
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Operational Research, Knowledge And Data (ORKAD)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Institute for Translational Research in Inflammation - U 1286 (INFINITE (Ex-Liric))
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
José-García, Adán
Source :
Metaheuristics for Machine Learning ISBN: 9789811938870
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Biclustering is an unsupervised machine learning technique that simultaneously clusters rows and columns in a data matrix. Biclustering has emerged as an important approach and plays an essential role in various applications such as bioinformatics, text mining, and pattern recognition. However, finding significant biclusters is an NP-hard problem that can be formulated as an optimization problem. Therefore, different metaheuristics have been applied to biclustering problems because of their exploratory capability of solving complex optimization problems in reasonable computation time. Although various surveys on biclustering have been proposed, there is a lack of a comprehensive survey on the biclustering problem using metaheuristics. This chapter will present a survey of metaheuristics approaches to address the biclustering problem. The review focuses on the underlying optimization methods and their main search components: representation, objective function, and variation operators. A specific discussion on single versus multi-objective approaches is presented. Finally, some emerging research directions are presented.<br />Comment: 32 pages, 6 figures, 2 tables, chapter book

Details

Language :
English
ISBN :
978-981-19388-7-0
ISBNs :
9789811938870
Database :
OpenAIRE
Journal :
Metaheuristics for Machine Learning ISBN: 9789811938870
Accession number :
edsair.doi.dedup.....62a07dbcdfcc2308b2c733a87aa571ef