Back to Search Start Over

Bandwidth-control orbital-selective delocalization of 4f electrons in epitaxial Ce films

Authors :
Yang Liu
Yang Yang
Huiqiu Yuan
Peng Li
Yuan Fang
Chao Cao
Yi Wu
Zhiguang Xiao
Hao Zheng
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-7 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

The 4f-electron delocalization plays a key role in the low-temperature properties of rare-earth metals and intermetallics, and it is normally realized by the Kondo coupling between 4f and conduction electrons. Due to the large Coulomb repulsion of 4f electrons, the bandwidth-control Mott-type delocalization, commonly observed in d-electron systems, is difficult in 4f-electron systems and remains elusive in spectroscopic experiments. Here we demonstrate that the bandwidth-control orbital-selective delocalization of 4f electrons can be realized in epitaxial Ce films by thermal annealing, which results in a metastable surface phase with reduced layer spacing. The quasiparticle bands exhibit large dispersion with exclusive 4f character near \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{{{\Gamma }}}$$\end{document}Γ¯ and extend reasonably far below the Fermi energy, which can be explained from the Mott physics. The experimental quasiparticle dispersion agrees well with density-functional theory calculation and also exhibits unusual temperature dependence, which could arise from the delicate interplay between the bandwidth-control Mott physics and the coexisting Kondo hybridization. Our work opens up the opportunity to study the interaction between two well-known localization-delocalization mechanisms in correlation physics, i.e., Kondo vs Mott, which can be important for a fundamental understanding of 4f-electron systems.<br />The mechanism of the delocalization transition of 4f electrons in closely-packed Ce metal has been debated. Here, the authors present photoemission evidence for bandwidth-controlled Mott delocalization in a previously unreported structural phase of thin epitaxial Ce films obtained by thermal annealing.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....62a78d9a65802b9e09913d361e9b66eb