Back to Search Start Over

Ferroelectrics with a controlled oxygen-vacancy distribution by design

Authors :
Yuji Noguchi
Hiroki Matsuo
Masaru Miyayama
Yuuki Kitanaka
Source :
Scientific Reports, Vol 9, Iss 1, Pp 1-10 (2019), Scientific Reports
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Controlling and manipulating defects in materials provides an extra degree of freedom not only for enhancing physical properties but also for introducing additional functionalities. In ferroelectric oxides, an accumulation of point defects at specific boundaries often deteriorates a polarization-switching capability, but on the one hand, delivers interface-driven phenomena. At present, it remains challenging to control oxygen vacancies at will to achieve a desirable defect structure. Here, we report a practical route to designing oxygen-vacancy distributions by exploiting the interaction with transition-metal dopants. Our thin-film experiments combined with ab-initio theoretical calculations for BiFeO3 demonstrate that isovalent dopants such as Mn3+ with a partly or fully electron-occupied eg state can trap oxygen vacancies, leading to a robust polarization switching. Our approach to controlling oxygen vacancy distributions by harnessing the vacancy-trapping capability of isovalent transition-metal cations will realize the full potential of switchable polarization in ferroelectric perovskite oxides.

Details

ISSN :
20452322
Volume :
9
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....62ba3b8412f5b8fa735999b8cc5ffc9f
Full Text :
https://doi.org/10.1038/s41598-019-40717-0