Back to Search
Start Over
Ferroelectrics with a controlled oxygen-vacancy distribution by design
- Source :
- Scientific Reports, Vol 9, Iss 1, Pp 1-10 (2019), Scientific Reports
- Publication Year :
- 2019
- Publisher :
- Springer Science and Business Media LLC, 2019.
-
Abstract
- Controlling and manipulating defects in materials provides an extra degree of freedom not only for enhancing physical properties but also for introducing additional functionalities. In ferroelectric oxides, an accumulation of point defects at specific boundaries often deteriorates a polarization-switching capability, but on the one hand, delivers interface-driven phenomena. At present, it remains challenging to control oxygen vacancies at will to achieve a desirable defect structure. Here, we report a practical route to designing oxygen-vacancy distributions by exploiting the interaction with transition-metal dopants. Our thin-film experiments combined with ab-initio theoretical calculations for BiFeO3 demonstrate that isovalent dopants such as Mn3+ with a partly or fully electron-occupied eg state can trap oxygen vacancies, leading to a robust polarization switching. Our approach to controlling oxygen vacancy distributions by harnessing the vacancy-trapping capability of isovalent transition-metal cations will realize the full potential of switchable polarization in ferroelectric perovskite oxides.
- Subjects :
- 0301 basic medicine
Multidisciplinary
Materials science
Dopant
lcsh:R
lcsh:Medicine
chemistry.chemical_element
Crystallographic defect
Oxygen
Ferroelectricity
Article
Oxygen vacancy
03 medical and health sciences
030104 developmental biology
0302 clinical medicine
chemistry
Chemical physics
lcsh:Q
lcsh:Science
Polarization (electrochemistry)
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 20452322
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- Scientific Reports
- Accession number :
- edsair.doi.dedup.....62ba3b8412f5b8fa735999b8cc5ffc9f
- Full Text :
- https://doi.org/10.1038/s41598-019-40717-0