Back to Search
Start Over
Mechanisms underlying cross-orientation suppression in cat visual cortex
- Source :
- Nature neuroscience. 9(4)
- Publication Year :
- 2005
-
Abstract
- In simple cells of the cat primary visual cortex, null-oriented stimuli, which by themselves evoke no response, can completely suppress the spiking response to optimally oriented stimuli. This cross-orientation suppression has been interpreted as evidence for cross-orientation inhibition: synaptic inhibition among cortical cells with different preferred orientations. In intracellular recordings from simple cells, however, we found that cross-oriented stimuli suppressed, rather than enhanced, synaptic inhibition and, at the same time, suppressed synaptic excitation. Much of the suppression of excitation could be accounted for by the behavior of geniculate relay cells: contrast saturation and rectification in relay cell responses, when applied to a linear feed-forward model, predicted cross-orientation suppression of the modulation (F1) component of excitation evoked in simple cells. In addition, we found that the suppression of the spike output of simple cells was almost twice the suppression of their synaptic inputs. Thus, cross-orientation suppression, like orientation selectivity, is strongly amplified by threshold.
- Subjects :
- Systems neuroscience
Neurons
Retina
Cerebellum
Patch-Clamp Techniques
Chemistry
General Neuroscience
Action Potentials
Geniculate Bodies
Models, Biological
Synaptic Transmission
Cortex (botany)
Visual cortex
medicine.anatomical_structure
Geniculate
Synapses
medicine
Cats
Visual Perception
Animals
Patch clamp
Neuron
Neuroscience
Visual Cortex
Subjects
Details
- ISSN :
- 10976256
- Volume :
- 9
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Nature neuroscience
- Accession number :
- edsair.doi.dedup.....62bbe64812769f2ee4049f5498ad98a7