Back to Search
Start Over
Static and Dynamic Multimodal Optimization by Improved Covariance Matrix Self-Adaptation Evolution Strategy With Repelling Subpopulations
- Source :
- IEEE Transactions on Evolutionary Computation. 26:527-541
- Publication Year :
- 2022
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2022.
-
Abstract
- The covariance matrix self-adaptation evolution strategy with repelling subpopulations (RS-CMSA-ES) is one of the most successful multimodal optimization methods currently available. However, some of its components may become inefficient in certain situations. This study introduces the second variant of this method, called RS-CMSA-ESII. It improves the adaptation schemes for the normalized taboo distances of the archived solutions and the covariance matrix of the subpopulation, the termination criteria for the subpopulations, and the way in which the infeasible solutions are treated. It also improves the time complexity of RS-CMSA-ES by updating the initialization procedure of a subpopulation and developing a more accurate metric for determining critical taboo regions. The effects of these modifications are illustrated by designing controlled numerical simulations. RS-CMSA-ESII is then compared with the most successful and recent niching methods for multimodal optimization on a widely adopted test suite. The results obtained reveal the superiority of RS-CMSA-ESII over these methods, including the winners of the competition on niching methods for multimodal optimization in previous years. Besides, this study extends RS-CMSA-ESII to dynamic multimodal optimization and compares it with a few recently proposed methods on the modified moving peak benchmark functions.
- Subjects :
- Mathematical optimization
evolutionary algorithm
Computer science
Covariance matrix
Initialization
niching
02 engineering and technology
Theoretical Computer Science
Computational Theory and Mathematics
Continuous optimization
Metric (mathematics)
dynamic optimization
0202 electrical engineering, electronic engineering, information engineering
Benchmark (computing)
Test suite
020201 artificial intelligence & image processing
Evolution strategy
Adaptation (computer science)
Time complexity
Software
Subjects
Details
- ISSN :
- 19410026 and 1089778X
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Evolutionary Computation
- Accession number :
- edsair.doi.dedup.....62c0ebbbc1bccafd4cdd5a948925d1c3