Back to Search Start Over

Action du groupe des opérateurs de gamétisation sur les identités ω-polynomiales

Authors :
Cristián Mallol
Richard Varro
Universidad de La Frontera, Temuco, Chile
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Algebra, Journal of Algebra, Elsevier, 2013, 375, pp.22-32. ⟨10.1016/j.jalgebra.2012.11.019⟩
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

The gametization process reduces the study of non-commutative and non-associative algebras satisfying non-homogeneous polynomial identities with variables in X = { x 1 , … , x n } to algebras verifying simpler identities. However after a gametization, certain identities remain invariant and other identities, said universal invariant, are invariant for every gametization. Now in the case n = 1 , for all algebras satisfying a universal invariant polynomial identity studied until now, we know that the existence of an idempotent is not certain. Using an action of the gametization operators group on the non-commutative and non-associative algebra of polynomials K 〈 X 〉 , we give all identities which are invariant and universal invariant by gametization.

Details

ISSN :
00218693 and 1090266X
Volume :
375
Database :
OpenAIRE
Journal :
Journal of Algebra
Accession number :
edsair.doi.dedup.....6332347419eae3da8830efef4d1e23cb
Full Text :
https://doi.org/10.1016/j.jalgebra.2012.11.019