Back to Search
Start Over
Action du groupe des opérateurs de gamétisation sur les identités ω-polynomiales
- Source :
- Journal of Algebra, Journal of Algebra, Elsevier, 2013, 375, pp.22-32. ⟨10.1016/j.jalgebra.2012.11.019⟩
- Publication Year :
- 2013
- Publisher :
- Elsevier BV, 2013.
-
Abstract
- The gametization process reduces the study of non-commutative and non-associative algebras satisfying non-homogeneous polynomial identities with variables in X = { x 1 , … , x n } to algebras verifying simpler identities. However after a gametization, certain identities remain invariant and other identities, said universal invariant, are invariant for every gametization. Now in the case n = 1 , for all algebras satisfying a universal invariant polynomial identity studied until now, we know that the existence of an idempotent is not certain. Using an action of the gametization operators group on the non-commutative and non-associative algebra of polynomials K 〈 X 〉 , we give all identities which are invariant and universal invariant by gametization.
- Subjects :
- Discrete mathematics
Non-homogeneous polynomial identity
Pure mathematics
Polynomial
Algebra and Number Theory
Invariant polynomial
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
010102 general mathematics
Gametization of algebra
010103 numerical & computational mathematics
01 natural sciences
Quantitative Biology::Cell Behavior
Finite type invariant
Baric algebras
ω-polynomial identity
Idempotence
Quantitative Biology::Populations and Evolution
0101 mathematics
Invariant (mathematics)
Mathematics
Subjects
Details
- ISSN :
- 00218693 and 1090266X
- Volume :
- 375
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....6332347419eae3da8830efef4d1e23cb
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2012.11.019