Back to Search Start Over

From pediatric covariate model to semiphysiological function for maturation: part I-extrapolation of a covariate model from morphine to Zidovudine

Authors :
Michael Neely
Edmund V. Capparelli
Meindert Danhof
E. Panoilia
Elke H. J. Krekels
Mark Mirochnick
Catherijne A. J. Knibbe
Dick Tibboel
Source :
CPT: Pharmacometrics & Systems Pharmacology, 2012(1), e9, CPT: Pharmacometrics & Systems Pharmacology
Publication Year :
2012

Abstract

New approaches to expedite the development of safe and effective pediatric dosing regimens and first-in-child doses are urgently needed. Model-based approaches require quantitative functions on the maturation of different metabolic pathways. In this study, we directly incorporated a pediatric covariate model for the glucuronidation of morphine into a pediatric population model for zidovudine glucuronidation. This model was compared with a reference model that gave the statistically best description of the data. Both models had adequate goodness-of-fit plots and normalized prediction distribution errors (NPDE), similar population clearance values for each individual, and a Δobjective function value of 13 points (Δ2df). This supports our hypothesis that pediatric pharmacokinetic covariate models contain system-specific information that can be used as semiphysiological functions in pediatric population models. Further research should explore the validity of the semiphysiological function for other UDP-glucuronosyltransferase 2B7 substrates and patient populations and reveal how this function can be used for pediatric physiologically based pharmacokinetic models.CPT: PharmacometricsSystems Pharmacology (2012) 1, e9; doi:10.1038/psp.2012.11; advance online publication 3 October 2012.

Details

Language :
English
Database :
OpenAIRE
Journal :
CPT: Pharmacometrics & Systems Pharmacology, 2012(1), e9, CPT: Pharmacometrics & Systems Pharmacology
Accession number :
edsair.doi.dedup.....634bd0092f8eaa4ae157a4aacd86bf46