Back to Search Start Over

Modified shallow water model for viscous fluids and positivity preserving numerical approximation

Authors :
Mattia de' Michieli Vitturi
Fabio Di Benedetto
Elisa Biagioli
Source :
Applied Mathematical Modelling. 94:482-505
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Shallow water equations are widely used in the simulation of those geophysical flows for which the flow horizontal length scale is much greater than the vertical one. Inspired by the example of lava flows, we consider here a modified model with an additional transport equation for a scalar quantity (e.g., temperature), and the derivation of the shallow water equations from depth-averaging the Navier-Stokes equations is presented. The assumption of constant vertical profiles for some of the model variables is relaxed allowing the presence of vertical profiles, and it follows that the non-linearity of the flux terms results in the introduction of appropriate shape coefficients. The space discretization of the resulting system of hyperbolic partial differential equations is obtained with a modified version of the finite volume central-upwind scheme introduced by Kurganov and Petrova in 2007. The time discretization is based on an implicit-explicit Runge-Kutta method which couples properly the hyperbolic part and the stiff source terms, avoiding the use of a very small time step; the use of complex arithmetic increases accuracy in the implicit treatment of stiff terms. The whole scheme is proved to preserve the positivity of flow thickness and the stationary steady-states. Some numerical experiments are performed to validate the proposed method and to show the incidence on the numerical solutions of shape coefficients introduced in the model.

Details

ISSN :
0307904X
Volume :
94
Database :
OpenAIRE
Journal :
Applied Mathematical Modelling
Accession number :
edsair.doi.dedup.....63561fa3d0753a7bae1b7de7eabe58ae
Full Text :
https://doi.org/10.1016/j.apm.2020.12.036