Back to Search Start Over

Development of biodegradable scaffolds based on patient-specific arterial configuration

Authors :
Toshio Fukuda
Tomoyuki Uchida
Mika Tada
Takehisa Matsuda
Fumihito Arai
Seiichi Ikeda
Hiroyuki Oura
Makoto Negoro
Takuma Nakano
Source :
Journal of Biotechnology. 133:213-218
Publication Year :
2008
Publisher :
Elsevier BV, 2008.

Abstract

Biodegradable scaffolds are of great value in tissue engineering. We have developed a method for fabricating patient-specific vascular scaffolds from a biocompatible and biodegradable polymer, poly( l -lactide-co-ɛ-caprolactone). This method's usefulness is due to flexibility in the choice of materials and vascular configurations. Here, we present a way to fabricate scaffolds of human carotid artery by combining processes of rapid prototyping, lost wax, dip coating, selective dissolution, and salt leaching. The result was the successful development of porous biodegradable scaffolds, with mechanical strength covering the range of human blood vessels (1–3 MPa). Human umbilical vein endothelial cells were also cultured on the scaffolds and their biocompatibility was confirmed by cell growth. The Young's modulus of scaffolds could be controlled by changing polymer concentration and porosity. The wall thickness of the tubular scaffold was also controllable by adjusting polymer concentration and pull-up velocity during dip coating. We believe that this fabrication technique can be applied to patient-specific regeneration of blood vessels.

Details

ISSN :
01681656
Volume :
133
Database :
OpenAIRE
Journal :
Journal of Biotechnology
Accession number :
edsair.doi.dedup.....6398592950137cfd6e959233f9ab1fbe