Back to Search Start Over

Discrepancies between measured changes of radiobiological hypoxic fraction and oxygen tension monitoring using two assay systems

Authors :
Janice M. Brown
K. Sasai
Source :
International journal of radiation oncology, biology, physics. 30(2)
Publication Year :
1994

Abstract

This study was conducted to assess the ability of computerized pO2 histography to measure changes in tumor oxygenation produced by low oxygen breathing.Female syngeneic C3H/Km mice bearing SCC VII/St carcinomas were used in these experiments. Changes in tumor oxygenation produced by the mice breathing 10% oxygen were assessed with computerized pO2 histography, 3H-misonidazole binding, and the paired survival curve assay of radiosensitivity.The hypoxic cell fraction of the tumors in mice breathing 10% oxygen was 3.1 times higher than that of tumors in mice breathing normal air determined by an in vivo-in vitro clonogenic assay. Binding of radiolabeled misonidazole to the tumors in mice breathing 10% oxygen was also significantly higher than that to tumors in mice breathing normal air (p0.05). In addition, oxygen tension histograms for normal tissue showed a dramatic shift to a lower oxygen tension when the mice were breathing 10% oxygen. However, under identical conditions, there was only a minimal shift in the oxygen tension of tumor tissue. Although the number of oxygen tension readings in the relatively oxic class in tumor tissue was lower when the mice were breathing 10% oxygen than when breathing normal air, there was not a significant decrease in the median pO2 value for the tumor. The number of pO2 readings lower than 5 mmHg in the tumor was not affected by the 10% oxygen breathing.These findings indicate that increases in radiobiological hypoxic fraction produced by lower blood oxygen levels may not correlate well with the results of polarographic measurements of tumor pO2 levels.

Details

ISSN :
03603016
Volume :
30
Issue :
2
Database :
OpenAIRE
Journal :
International journal of radiation oncology, biology, physics
Accession number :
edsair.doi.dedup.....63a138b8bc9c083e1222f23ecbb1338f