Back to Search
Start Over
Compressed Prostate Cancer Cells Decrease Osteoclast Activity While Enhancing Osteoblast Activity In Vitro
- Source :
- van Santen, V J B, Zandieh Doulabi, B, Semeins, C M, Hogervorst, J M A, Bratengeier, C & Bakker, A D 2023, ' Compressed Prostate Cancer Cells Decrease Osteoclast Activity While Enhancing Osteoblast Activity In Vitro ', International Journal of Molecular Sciences, vol. 24, no. 1, 759, pp. 1-19 . https://doi.org/10.3390/ijms24010759, International Journal of Molecular Sciences; Volume 24; Issue 1; Pages: 759, International Journal of Molecular Sciences, 24(1):759. Multidisciplinary Digital Publishing Institute (MDPI), International Journal of Molecular Sciences, 24(1):759, 1-19. Multidisciplinary Digital Publishing Institute (MDPI)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Once prostate cancer cells metastasize to bone, they perceive approximately 2 kPa compression. We hypothesize that 2 kPa compression stimulates the epithelial-to-mesenchymal transition (EMT) of prostate cancer cells and alters their production of paracrine signals to affect osteoclast and osteoblast behavior. Human DU145 prostate cancer cells were subjected to 2 kPa compression for 2 days. Compression decreased expression of 2 epithelial genes, 5 out of 13 mesenchymal genes, and increased 2 mesenchymal genes by DU145 cells, as quantified by qPCR. Conditioned medium (CM) of DU145 cells was added to human monocytes that were stimulated to differentiate into osteoclasts for 21 days. CM from compressed DU145 cells decreased osteoclast resorptive activity by 38% but did not affect osteoclast size and number compared to CM from non-compressed cells. CM was also added to human adipose stromal cells, grown in osteogenic medium. CM of compressed DU145 cells increased bone nodule production (Alizarin Red) by osteoblasts from four out of six donors. Compression did not affect IL6 or TNF-alpha production by PC DU145 cells. Our data suggest that compression affects EMT-related gene expression in DU145 cells, and alters their production of paracrine signals to decrease osteoclast resorptive activity while increasing mineralization by osteoblasts is donor dependent. This observation gives further insight in the altered behavior of PC cells upon mechanical stimuli, which could provide novel leads for therapies, preventing bone metastases. Funding Agencies|MechanoCHIP
- Subjects :
- Organic Chemistry
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
bone metastasis
bone remodeling
epithelial-to-mesenchymal transition
pressure
adipose tissue-derived mesenchymal stromal cell
General Medicine
Catalysis
Computer Science Applications
Inorganic Chemistry
SDG 3 - Good Health and Well-being
Physical and Theoretical Chemistry
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Molecular Biology
Spectroscopy
Subjects
Details
- ISSN :
- 14220067 and 16616596
- Volume :
- 24
- Database :
- OpenAIRE
- Journal :
- International Journal of Molecular Sciences
- Accession number :
- edsair.doi.dedup.....63c57eb9b4751e2220c3363b3e376e5e
- Full Text :
- https://doi.org/10.3390/ijms24010759