Back to Search
Start Over
The interplay between chromosome stability and cell cycle control explored through gene–gene interaction and computational simulation
- Source :
- Nucleic Acids Research
- Publication Year :
- 2016
- Publisher :
- Oxford University Press, 2016.
-
Abstract
- Chromosome stability models are usually qualitative models derived from molecular-genetic mechanisms for DNA repair, DNA synthesis, and cell division. While qualitative models are informative, they are also challenging to reformulate as precise quantitative models. In this report we explore how (A) laboratory experiments, (B) quantitative simulation, and (C) seriation algorithms can inform models of chromosome stability. Laboratory experiments were used to identify 19 genes that when over-expressed cause chromosome instability in the yeast Saccharomyces cerevisiae To better understand the molecular mechanisms by which these genes act, we explored their genetic interactions with 18 deletion mutations known to cause chromosome instability. Quantitative simulations based on a mathematical model of the cell cycle were used to predict the consequences of several genetic interactions. These simulations lead us to suspect that the chromosome instability genes cause cell-cycle perturbations. Cell-cycle involvement was confirmed using a seriation algorithm, which was used to analyze the genetic interaction matrix to reveal an underlying cyclical pattern. The seriation algorithm searched over 10(14) possible arrangements of rows and columns to find one optimal arrangement, which correctly reflects events during cell cycle phases. To conclude, we illustrate how the molecular mechanisms behind these cell cycle events are consistent with established molecular interaction maps.
- Subjects :
- 0301 basic medicine
Time Factors
Cell division
DNA repair
Saccharomyces cerevisiae
Genes, Fungal
Mitosis
Computational biology
Biology
03 medical and health sciences
0302 clinical medicine
Gene interaction
Chromosome instability
Chromosomal Instability
Genetics
Computer Simulation
Gene
Models, Genetic
Computational Biology
Epistasis, Genetic
Cell Cycle Checkpoints
Cell cycle
biology.organism_classification
Flow Cytometry
030104 developmental biology
Chromosomes, Fungal
030217 neurology & neurosurgery
Subjects
Details
- Language :
- English
- ISSN :
- 13624962 and 03051048
- Volume :
- 44
- Issue :
- 17
- Database :
- OpenAIRE
- Journal :
- Nucleic Acids Research
- Accession number :
- edsair.doi.dedup.....63ebda227ecb742b601a8aa7cb7407ed