Back to Search
Start Over
Co-evolution of atmospheres, life, and climate
- Source :
- Astrobiology, Astrobiology, Mary Ann Liebert, 2010, 10 (1), pp.77-88. ⟨10.1089/ast.2009.0375⟩
- Publication Year :
- 2010
- Publisher :
- Mary Ann Liebert, 2010.
-
Abstract
- After Earth's origin, our host star, the Sun, was shining 20–25% less brightly than today. Without greenhouselike\ud conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geological record indicates an abundance of the greenhouse gas CO2. CH4 was probably present as well; and, in this regard, methanogenic bacteria, which belong to a diverse group of anaerobic prokaryotes that ferment CO2 plus H2 to CH4, may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies\ud that became increasingly specialized. The development of photosynthesis allowed the Sun's energy to be harvested directly by life-forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earth's surface. Our own planet is a very good example of how life-forms modified the atmosphere over the planets' lifetime. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planet's climate.
- Subjects :
- Atmospheres
010504 meteorology & atmospheric sciences
Ultraviolet Rays
[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]
Climate
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]
Planets
FOS: Physical sciences
chemistry.chemical_element
Geologic record
01 natural sciences
Oxygen
Astrobiology
Atmosphere
Ozone
Planet
0103 physical sciences
Ozone layer
Photosynthesis
010303 astronomy & astrophysics
0105 earth and related environmental sciences
Earth and Planetary Astrophysics (astro-ph.EP)
Exoplanets
Early Earth
Biomarker
Agricultural and Biological Sciences (miscellaneous)
Exoplanet
chemistry
13. Climate action
Space and Planetary Science
Greenhouse gas
Sunlight
Environmental science
Solar System
Evolution, Planetary
Astrophysics - Earth and Planetary Astrophysics
Subjects
Details
- Language :
- English
- ISSN :
- 15311074 and 15578070
- Database :
- OpenAIRE
- Journal :
- Astrobiology, Astrobiology, Mary Ann Liebert, 2010, 10 (1), pp.77-88. ⟨10.1089/ast.2009.0375⟩
- Accession number :
- edsair.doi.dedup.....63fa7c058c1f70e77b2895f7b4474d69