Back to Search
Start Over
Activating Mutation in the Catalytic Domain of c-kit Elicits Hematopoietic Transformation by Receptor Self-Association Not at the Ligand-Induced Dimerization Site
- Source :
- Blood. 93:1319-1329
- Publication Year :
- 1999
- Publisher :
- American Society of Hematology, 1999.
-
Abstract
- The c-kit receptor tyrosine kinase (KIT) is constitutively activated by naturally occurring mutations in either the juxtamembrane domain or the kinase domain. Although the juxtamembrane domain mutations led to ligand-independent KIT dimerization, the kinase domain mutations (Asp814 → Val or Tyr) did not. In an effort to determine if the kinase domain mutant could transfer oncogenic signaling without receptor dimerization, we have constructed the truncated types of c-kitWild and c-kitTyr814 cDNAs (c-kitDel-Wild and c-kitDel-Tyr814 cDNAs, respectively), in which ligand-binding and ligand-induced dimerization domains were deleted. When c-kitDel-Wild and c-kitDel-Tyr814 genes were introduced into a murine interleukin-3 (IL-3)–dependent cell line Ba/F3, KITDel-Tyr814 was constitutively phosphorylated on tyrosine and activated, whereas KITDel-Wild was not. In addition, Ba/F3 cells expressing KITDel-Tyr814(Ba/F3Del-Tyr814) grew in suspension culture without the addition of exogenous growth factor, whereas Ba/F3 cells expressing KITDel-Wild (Ba/F3Del-Wild) required IL-3 for growth. The factor-independent growth of Ba/F3Del-Tyr814 cells was virtually abrogated by coexpression of KITW42 that is a dominant-negative form of KIT, but not by that of KITWild, suggesting that KITDel-Tyr814 may not function as a monomer but may require receptor dimerization for inducing factor-independent growth. Furthermore, KITDel-Tyr814 was found to be coimmunoprecipitated with KITWild or KITW42 by an ACK2 monoclonal antibody directed against the extracellular domain of KIT. Moreover, KITW42 was constitutively associated with a chimeric FMS/KITTyr814 receptor containing the ligand-binding and receptor dimerization domain of c-fmsreceptor (FMS) fused to the transmembrane and cytoplasmic domain of KITTyr814, but not with a chimeric FMS/KITWildreceptor even after stimulation with FMS-ligand. These results suggest that constitutively activating mutation of c-kit at the Asp814 codon may cause a conformation change that leads to receptor self-association not in the extracellular domain and that the receptor self-association of the Asp814 mutant may be important for activation of downstream effectors that are required for factor-independent growth and tumorigenicity.
Details
- ISSN :
- 15280020 and 00064971
- Volume :
- 93
- Database :
- OpenAIRE
- Journal :
- Blood
- Accession number :
- edsair.doi.dedup.....6435269eb1028546835f6362d819365a
- Full Text :
- https://doi.org/10.1182/blood.v93.4.1319.404k11_1319_1329