Back to Search Start Over

The Random Transiter – EPIC 249706694/HD 139139

Authors :
William D. Cochran
Allyson Bieryla
Michael Endl
H. M. Schwengeler
Ivan Terentev
Daryll LaCourse
Geert Barentsen
Kento Masuda
Christina Hedges
Martti H. Kristiansen
M. R. Omohundro
David W. Latham
Fei Dai
Tom Jacobs
Andrew W. Mann
Andrew Vanderburg
Jason Dittmann
Saul Rappaport
Jon M. Jenkins
Source :
Rappaport, S, Vanderburg, A, Kristiansen, M H, Omohundro, M R, Schwengeler, H M, Terentev, I A, Dai, F, Masuda, K, Jacobs, T L, LaCourse, D, Latham, D W, Bieryla, A, Hedges, C L, Dittmann, J, Barentsen, G, Cochran, W, Endl, M, Jenkins, J M & Mann, A 2019, ' The Random Transiter-EPIC 249706694/HD 139139 ', Monthly Notices of the Royal Astronomical Society, vol. 488, no. 2, pp. 2455-2465 . https://doi.org/10.1093/mnras/stz1772
Publication Year :
2019
Publisher :
Oxford University Press (OUP), 2019.

Abstract

We have identified a star, EPIC 249706694 (HD 139139), that was observed during K2 Campaign 15 with the Kepler extended mission that appears to exhibit 28 transit-like events over the course of the 87-day observation. The unusual aspect of these dips, all but two of which have depths of $200 \pm 80$ ppm, is that they exhibit no periodicity, and their arrival times could just as well have been produced by a random number generator. We show that no more than four of the events can be part of a periodic sequence. We have done a number of data quality tests to ascertain that these dips are of astrophysical origin, and while we cannot be absolutely certain that this is so, they have all the hallmarks of astrophysical variability on one of two possible host stars (a likely bound pair) in the photometric aperture. We explore a number of ideas for the origin of these dips, including actual planet transits due to multiple or dust emitting planets, anomalously large TTVs, S- and P-type transits in binary systems, a collection of dust-emitting asteroids, `dipper-star' activity, and short-lived starspots. All transit scenarios that we have been able to conjure up appear to fail, while the intrinsic stellar variability hypothesis would be novel and untested.<br />Comment: 12 pages, 6 figures, and 7 tables; Accepted for publication in MNRAS

Details

ISSN :
13652966 and 00358711
Volume :
488
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society
Accession number :
edsair.doi.dedup.....645ad5400b31c7c96524750d763e2961