Back to Search Start Over

Sequence characterization and expression pattern analysis of six kinds of IL-17 family genes in the Asian swamp eel (Monopterus albus)

Authors :
Wenbing Zhang
Dongdong Tang
Qiaoqing Xu
Weihua Gao
Hanwen Yuan
Kai Luo
Shipei Wu
Dashi Zhu
Source :
Fish & Shellfish Immunology. 89:257-270
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Interleukin-17 (IL-17) is an important cytokine that plays a critical role in the inflammatory response and host defense against extracellular pathogens. In the present study, six novel IL-17 family genes (MaIL-17) were identified by analyzing Asian swamp eel (Monopterus albus) genome. Sequence analysis revealed that the MaIL-17 family genes shared similar features, comprising a signal peptide, an IL-17 superfamily region, and four conserved cysteines. Phylogenetic analysis showed that the MaIL-17 genes were clustered together with their corresponding IL-17 genes from other species. The similarity and identity of all IL-17 family genes indicated that the MaIL-17 genes are conserved among teleosts, while Ma-IL-17D is more conserved than the other Ma-IL-17s. Except for MaIL-17A/F3 and MaIL-17D, all MaIL-17s shared the same genomic structure as the genes from other fish, namely three exons and two introns. The MaIL-17s showed conserved synteny among fish, and we found that the MaIL-17D locus has a more conserved syntenic relationship with the loci from other fish and humans. These results demonstrated that MaIL-17D and human IL-17D might have evolved from a common ancestral gene and subsequently diverged. The analysis of swamp eel reference genes revealed that EEF1A1 (encoding eukaryotic translation elongation factor 1 alpha 1) was an ideal reference gene for accurate real-time qRT-PCR normalization in the swamp eel. The MaIL-17 genes are widely distributed throughout tissues, suggesting that MaIL-17s carry out their biological functions in immune and non-immune tissues compartments. The transcript of Ma-IL17s exhibited different fold changes in head kidney cells in response to Aeromonas veronii phorbol 12-myristate 13-acetate (PMA) and polyinosinic:polycytidylic acid (poly I:C) challenge, showing that MaIL-17A/F1 has stronger antiviral activities compared with other MaIL-17 family genes, and that MaIL-17A/F3 and MaIL-17A/F2 possess stronger effects against extracellular pathogens compared with the others; however, MaIL-17C2 and MaIL-17D may play vital roles during pathogen infection. The differential immune responses of these genes to Aeromonas veronii, PMA and poly I:C implied distinct mechanisms of host defense against extracellular pathogens.

Details

ISSN :
10504648
Volume :
89
Database :
OpenAIRE
Journal :
Fish & Shellfish Immunology
Accession number :
edsair.doi.dedup.....647e05484784b62d99e7155cbf1aebc1
Full Text :
https://doi.org/10.1016/j.fsi.2019.03.050