Back to Search Start Over

On zeros and growth of solutions of complex difference equations

On zeros and growth of solutions of complex difference equations

Authors :
Min-Feng Chen
Ning Cui
Source :
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-16 (2021)
Publication Year :
2021
Publisher :
SpringerOpen, 2021.

Abstract

Let f be an entire function of finite order, let $n\geq 1$ n ≥ 1 , $m\geq 1$ m ≥ 1 , $L(z,f)\not \equiv 0$ L ( z , f ) ≢ 0 be a linear difference polynomial of f with small meromorphic coefficients, and $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 be a difference polynomial in f of degree $d\leq n-1$ d ≤ n − 1 with small meromorphic coefficients. We consider the growth and zeros of $f^{n}(z)L^{m}(z,f)+P_{d}(z,f)$ f n ( z ) L m ( z , f ) + P d ( z , f ) . And some counterexamples are given to show that Theorem 3.1 proved by I. Laine (J. Math. Anal. Appl. 469:808–826, 2019) is not valid. In addition, we study meromorphic solutions to the difference equation of type $f^{n}(z)+P_{d}(z,f)=p_{1}e^{\alpha _{1}z}+p_{2}e^{\alpha _{2}z}$ f n ( z ) + P d ( z , f ) = p 1 e α 1 z + p 2 e α 2 z , where $n\geq 2$ n ≥ 2 , $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 is a difference polynomial in f of degree $d\leq n-2$ d ≤ n − 2 with small mromorphic coefficients, $p_{i}$ p i , $\alpha _{i}$ α i ($i=1,2$ i = 1 , 2 ) are nonzero constants such that $\alpha _{1}\neq \alpha _{2}$ α 1 ≠ α 2 . Our results are improvements and complements of Laine 2019, Latreuch 2017, Liu and Mao 2018.

Details

Language :
English
ISSN :
16871847
Volume :
2021
Issue :
1
Database :
OpenAIRE
Journal :
Advances in Difference Equations
Accession number :
edsair.doi.dedup.....64b68b6a5d44edeaaa8debacf27c2f2e