Back to Search Start Over

Gradient-based adaptive importance samplers

Authors :
Elvira, Víctor
Chouzenoux, Emilie
Akyildiz, Ömer Deniz
Martino, Luca
School of Mathematics - University of Edinburgh
University of Edinburgh
OPtimisation Imagerie et Santé (OPIS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay
Imperial College London
Universidad Rey Juan Carlos [Madrid] (URJC)
ANR-17-CE40-0031,PISCES,Méthodes d'échantillonnage d'importance adaptatives pour l'inférence Bayésienne dans les systèmes complexes(2017)
European Project: ERC-2019-STG-850925,MAJORIS(2020)
Chouzenoux, Emilie
Méthodes d'échantillonnage d'importance adaptatives pour l'inférence Bayésienne dans les systèmes complexes - - PISCES2017 - ANR-17-CE40-0031 - AAPG2017 - VALID
ERC-2019-STG-850925 - MAJORIS - ERC-2019-STG-850925 - INCOMING
Inria Saclay - Île de France
Source :
Journal of The Franklin Institute, Journal of The Franklin Institute, 2023, 360 (13), pp.9490-9514. ⟨10.1016/j.jfranklin.2023.06.041⟩, Inria Saclay-Île de France. 2022
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; Importance sampling (IS) is a powerful Monte Carlo methodology for the approximation of intractable integrals, very often involving a target probability distribution. The performance of IS heavily depends on the appropriate selection of the proposal distributions where the samples are simulated from. In this paper, we propose an adaptive importance sampler, called GRAMIS, that iteratively improves the set of proposals. The algorithm exploits geometric information of the target to adapt the location and scale parameters of those proposals. Moreover, in order to allow for a cooperative adaptation, a repulsion term is introduced that favors a coordinated exploration of the state space. This translates into a more diverse exploration and a better approximation of the target via the mixture of proposals. Moreover, we provide a theoretical justification of the repulsion term. We show the good performance of GRAMIS in two problems where the target has a challenging shape and cannot be easily approximated by a standard uni-modal proposal.

Details

Language :
English
ISSN :
00160032
Database :
OpenAIRE
Journal :
Journal of The Franklin Institute, Journal of The Franklin Institute, 2023, 360 (13), pp.9490-9514. ⟨10.1016/j.jfranklin.2023.06.041⟩, Inria Saclay-Île de France. 2022
Accession number :
edsair.doi.dedup.....65288249d5641ac1f5b55a4b7ae0f4f0
Full Text :
https://doi.org/10.1016/j.jfranklin.2023.06.041⟩