Back to Search Start Over

Characterizing The Landscape Of Viral Expression In Cancer By Deep Learning

Authors :
Abdurrahman Elbasir
Ying Ye
Daniel Schäffer
Xue Hao
Jayamanna Wickramasinghe
Paul Lieberman
Quaid Morris
Rugang Zhang
Alejandro Schäffer
Noam Auslander
Source :
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

About 15% of human cancer cases are attributed to viral infections. To date, virus expression in tumor tissues has been mostly studied by aligning tumor RNA sequencing reads to databases of known viruses. To allow identification of divergent viruses and rapid characterization of the tumor virome, we developed viRNAtrap, an alignment-free pipeline to identify viral reads and assemble viral contigs. We apply viRNAtrap, which is based on a deep learning model trained to discriminate viral RNAseq reads, to 14 cancer types from The Cancer Genome Atlas (TCGA). We find that expression of exogenous cancer viruses is associated with better overall survival. In contrast, expression of human endogenous viruses is associated with worse overall survival. Using viRNAtrap, we uncover expression of unexpected and divergent viruses that have not previously been implicated in cancer. The viRNAtrap pipeline provides a way forward to study viral infections associated with different clinical conditions.

Details

Database :
OpenAIRE
Journal :
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Accession number :
edsair.doi.dedup.....652a92598e7145c1a76d3ceffdce8a6b
Full Text :
https://doi.org/10.1109/bibm55620.2022.9994939