Back to Search Start Over

RELAXATION OF FLUID SYSTEMS

Authors :
Nicolas Seguin
Edwige Godlewski
Frédéric Coquel
Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
LRC Manon (Laboratoire de recherche conventionné -- CEA/DM2S-LJLL -- Modélisation et approximation numérique orientées pour l'énergie nucléaire)
Source :
Mathematical Models and Methods in Applied Sciences, Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2012, 22 (8), pp.52. ⟨10.1142/S0218202512500145⟩, Mathematical Models and Methods in Applied Sciences, 2012, 22 (8), pp.52. ⟨10.1142/S0218202512500145⟩
Publication Year :
2012
Publisher :
World Scientific Pub Co Pte Lt, 2012.

Abstract

International audience; We propose a relaxation framework for general fluid models which can be understood as a natural ex- tension of the Suliciu approach in the Euler setting. In particular, the relaxation system may be totally degenerate. Several stability properties are proved. The relaxation procedure is shown to be efficient in the numerical approximation of the entropy weak solutions of the original PDEs. The numerical method is particularly simple in the case of a fully degenerate relaxation system for which the solution of the Riemann problem is explicit. Indeed, the Godunov solver for the homogeneous relaxation system results in an HLLC-type solver for the equilibirum model. Discrete entropy inequalities are established under a natural Gibbs principle.

Details

ISSN :
17936314 and 02182025
Volume :
22
Database :
OpenAIRE
Journal :
Mathematical Models and Methods in Applied Sciences
Accession number :
edsair.doi.dedup.....653c715e33915928270353544064b74a
Full Text :
https://doi.org/10.1142/s0218202512500145