Back to Search Start Over

Sparse LiDAR and Stereo Fusion (SLS-Fusion) for Depth Estimation and 3D Object Detection

Authors :
Pierre Duthon
Sergio A. Velastin
Louahdi Khoudour
Nguyen Anh Minh Mai
Alain Crouzil
CROUZIL, Alain
Institution of Engineering and Technology (IET)
CoMputational imagINg anD viSion (IRIT-MINDS)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement - Equipe-projet STI (Cerema Equipe-projet STI)
Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)
School of Electronic Engineering and Computer Science (EECS)
Queen Mary University of London (QMUL)
Carlos III University of Madrid
Source :
11th International Conference on Pattern Recognition Systems (ICPRS 2021), e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid, Universidad Carlos III de Madrid (UC3M), e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname
Publication Year :
2021
Publisher :
Institution of Engineering and Technology, 2021.

Abstract

Procedings in: 11th International Conference on Pattern Recognition Systems (ICPRS-21), conference paper, 17-19 mar, 2021, Universidad de Talca, Curicó, Chile. The ability to accurately detect and localize objects is recognized as being the most important for the perception of self-driving cars. From 2D to 3D object detection, the most difficult is to determine the distance from the ego-vehicle to objects. Expensive technology like LiDAR can provide a precise and accurate depth information, so most studies have tended to focus on this sensor showing a performance gap between LiDAR-based methods and camera-based methods. Although many authors have investigated how to fuse LiDAR with RGB cameras, as far as we know there are no studies to fuse LiDAR and stereo in a deep neural network for the 3D object detection task. This paper presents SLS-Fusion, a new approach to fuse data from 4-beam LiDAR and a stereo camera via a neural network for depth estimation to achieve better dense depth maps and thereby improves 3D object detection performance. Since 4-beam LiDAR is cheaper than the well-known 64-beam LiDAR, this approach is also classified as a low-cost sensors-based method. Through evaluation on the KITTI benchmark, it is shown that the proposed method significantly improves depth estimation performance compared to a baseline method. Also when applying it to 3D object detection, a new state of the art on low-cost sensor based method is achieved.

Details

Database :
OpenAIRE
Journal :
11th International Conference of Pattern Recognition Systems (ICPRS 2021)
Accession number :
edsair.doi.dedup.....654d3362f97b163cc426fa737ee9d8ff
Full Text :
https://doi.org/10.1049/icp.2021.1442