Back to Search Start Over

Applying Electrical Resistivity Tomography and Biological Methods to Assess the Hyporheic Zone Water Exchanges in Two Mediterranean Stream Reaches

Authors :
Sanda Iepure
David Gomez-Ortiz
Javier Lillo
Rubén Rasines-Ladero
Tiziana Di Lorenzo
Repositório da Universidade de Lisboa
Source :
Water; Volume 14; Issue 21; Pages: 3396
Publication Year :
2022
Publisher :
MDPI, 2022.

Abstract

The hyporheic zone (HZ) is a critical area of all river ecosystems. It is the area beneath the stream and adjacent to the stream, where the surface water and groundwater are mixed. The HZ extends both vertically and laterally depending on the sediment configuration, namely their porosity and permeability. This influences the hyporheic communities’ structural pattern and their active dispersal among distinct rivers compartments and alluvial aquifers. It is still difficult to assess the spatial extent of the HZ and the distribution of the mixing zones. This study applies time-lapse images obtained using electrical resistivity tomography (ERT) of 20 m wide and 5 m deep alluvial streams, with regards to the structural pattern of hyporheic communities represented by cyclopoids and ostracods, in order to assess the extent of the HZ in the riverbed and the parafluvial sediment configurations. The ERT images obtained at the hyporheic Site 1 are characterized by alluvial deposits dominated by coarse and very coarse sands with resistivity values ranging from ~20 to 80 Ohm.m, indicating a permeable zone up to ~0.5 m thick and extending laterally for ca. 5 m from the channel and associated with the hyporheic zone. The sediment configurations, texture, and structure indicate an active surface–hyporheic water exchange and low water retention into the sediments. This is also indicated by the hyporheic copepods and ostracods communities’ structure formed by a mixture of non-stygobites (five species) and stygobites (two species). A low-resistivity (

Details

Language :
English
Database :
OpenAIRE
Journal :
Water; Volume 14; Issue 21; Pages: 3396
Accession number :
edsair.doi.dedup.....655658aa59298e77adb3341bc7bdc3e4