Back to Search
Start Over
The Rayleigh–Benard problem in extremely confined geometries with and without the Soret effect
- Source :
- Comptes Rendus Mécanique, Comptes Rendus Mécanique, Elsevier, 2007, 335 (9-10), pp.638-654. ⟨10.1016/j.crme.2007.08.011⟩
- Publication Year :
- 2007
- Publisher :
- Elsevier BV, 2007.
-
Abstract
- We examine the linear stability of a liquid layer heated from below (the classical Rayleigh–Benard problem) but laterally confined between four vertical rigid and adiabatic boundaries. The main feature of the present study is that the height of the layer is much greater than the two other horizontal dimensions. The Soret effect is also taken into account. The ultimate objective of the study is a better knowledge of the operation of thermogravitational columns, and the search for a possible new way to measure positive Soret coefficients based on the variation of the critical Rayleigh number. To cite this article: J.K. Platten et al., C. R. Mecanique 335 (2007).
- Subjects :
- Mécanique des fluides
Strategy and Management
Thermodynamics
Computational fluid dynamics
Thermodiffusion
01 natural sciences
Measure (mathematics)
Thermophoresis
Soret
010305 fluids & plasmas
Physics::Fluid Dynamics
0103 physical sciences
Media Technology
General Materials Science
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
010306 general physics
Galerkin method
Adiabatic process
Confined space
Marketing
Physics
Computational fluid mechanics
business.industry
Mechanics
Rayleigh number
Galerkin
Rayleigh–Benard
business
Stability
Linear stability
Subjects
Details
- ISSN :
- 16310721
- Volume :
- 335
- Database :
- OpenAIRE
- Journal :
- Comptes Rendus Mécanique
- Accession number :
- edsair.doi.dedup.....65a2b76004513c8e228c6aa47da67c07
- Full Text :
- https://doi.org/10.1016/j.crme.2007.08.011