Back to Search
Start Over
Macular Vascular Imaging and Connectivity Analysis Using High-Resolution Optical Coherence Tomography
- Source :
- Translational vision sciencetechnology. 11(6)
- Publication Year :
- 2022
-
Abstract
- Funding: Supported by the Macula Foundation, Inc. (New York, NY, USA) and by Fundação para a Ciência e Tecnologia (FCT)–Portugal, cofunded by FEDER under the PT2020 Partnership Agreement (to MCS, including project PTDC/MED-PAT/30385/2017, iNOVA4Health-UIDB/04462/2020). ACF was funded by a FCT PhD studentship (PD/BD/135503/2018). DC was supported in part by a studentship from Fundação Luso-Americana para o Desenvolvimento (FLAD, USA R&D@PhD–Proj 2020/0140). Purpose: To characterize macular blood flow connectivity in vivo using high-resolution optical coherence tomography (HighRes OCT). Methods: Cross-sectional, observational study. Dense (6-µm interscan distance) perifoveal HighRes OCT raster scans were performed on healthy participants. To mitigate the limitations of projection-resolved OCT-angiography, flow and structural data were used to observe the vascular structures of the superficial vascular complex (SVC) and the deep vascular complex. Vascular segmentation and rendering were performed using Imaris 9.5 software. Inflow and outflow patterns were classified according to vascular diameter and branching order from superficial arteries and veins, respectively. Results: Eight eyes from eight participants were included in this analysis, from which 422 inflow and 459 outflow connections were characterized. Arteries had direct arteriolar connections to the SVC (78%) and to the intermediate capillary plexus (ICP, 22%). Deep capillary plexus (DCP) inflow derived from small-diameter vessels succeeding ICP arterioles. The most prevalent outflow pathways coursed through superficial draining venules (74%). DCP draining venules ordinarily merged with ICP draining venules and drained independently of superficial venules in 21% of cases. The morphology of DCP draining venules in structural HighRes OCT is distinct from other vessels crossing the inner nuclear layer and can be used to identify superficial veins. Conclusions: Vascular connectivity analysis supports a hybrid circuitry of blood flow within the human parafoveal macula. Translational Relevance: Characterization of parafoveal macular blood flow connectivity in vivo using a precise segmentation of HighRes OCT is consistent with ground-truth microscopy studies and shows a hybrid circuitry. publishersversion published
- Subjects :
- deep vascular complex
Biomedical Engineering
Visual Acuity
Retinal Vessels
high-resolution optical coherence tomography
Retinal Vessels/diagnostic imaging
Fluorescein Angiography/methods
Tomography, Optical Coherence/methods
macular blood flow
Ophthalmology
Cross-Sectional Studies
SDG 3 - Good Health and Well-being
Humans
Fluorescein Angiography
Tomography, X-Ray Computed
Tomography, Optical Coherence
Subjects
Details
- ISSN :
- 21642591
- Volume :
- 11
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- Translational vision sciencetechnology
- Accession number :
- edsair.doi.dedup.....65cb2a754d1e59c2e99139ba4208618e