Back to Search Start Over

Mapping the Abundance of Multipurpose Agroforestry Faidherbia albida Trees in Senegal

Authors :
Tingting Lu
Martin Brandt
Xiaoye Tong
Pierre Hiernaux
Louise Leroux
Babacar Ndao
Rasmus Fensholt
Source :
Remote Sensing; Volume 14; Issue 3; Pages: 662, Lu, T, Brandt, M, Tong, X, Hiernaux, P, Leroux, L, Ndao, B & Fensholt, R 2022, ' Mapping the Abundance of Multipurpose Agroforestry Faidherbia albida Trees in Senegal ', Remote Sensing, vol. 14, no. 3, 662 . https://doi.org/10.3390/rs14030662, Remote Sensing, Remote Sensing, Vol 14, Iss 662, p 662 (2022)
Publication Year :
2022
Publisher :
Multidisciplinary Digital Publishing Institute, 2022.

Abstract

Multi-purpose Faidherbia albida trees represent a vital component of agroforestry parklands in West Africa as they provide resources (fodder for livestock, fruits and firewood) and support water lifting and nutrient recycling for cropping. Faidherbia albida trees are characterized by their inverse phenology, growing leaf flowers and pods during the dry season, thereby providing fodder and shedding leaves during the wet season, which minimizes competition with pastures and crops for resources. Multi-spectral and multi-temporal satellite systems and novel computational methods open new doors for classifying single trees and identifying species. This study used a Multi-Layer Perception feedforward artificial neural network to classify pixels covered by Faidherbia albida canopies from Sentinel-2 time series in Senegal, West Africa. To better discriminate the Faidherbia albida signal from the background, monthly images from vegetation indices were used to form relevant variables for the model. We found that NDI54/NDVI from the period covering onset of leaf senescence (February) until end of senescence (leaf-off in June) to be the most important, resulting in a high precision and recall rate of 0.91 and 0.85. We compared our result with a potential Faidherbia albida occurrence map derived by empirical modelling of the species ecology, which deviates notably from the actual species occurrence mapped by this study. We have shown that even small differences in dry season leaf phenology can be used to distinguish tree species. The Faidherbia albida distribution maps, as provided here, will be key in managing farmlands in drylands, helping to optimize economic and ecological services from both tree and crop products.

Details

Language :
English
ISSN :
20724292
Database :
OpenAIRE
Journal :
Remote Sensing; Volume 14; Issue 3; Pages: 662
Accession number :
edsair.doi.dedup.....6617b0df59ab1ef70e9f4b581c838e56
Full Text :
https://doi.org/10.3390/rs14030662