Back to Search
Start Over
Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease
- Source :
- Brain. 138:3716-3733
- Publication Year :
- 2015
- Publisher :
- Oxford University Press (OUP), 2015.
-
Abstract
- Reduced cerebral blood flow impairs cognitive function and ultimately causes irreparable damage to brain tissue. The gliovascular unit, composed of neural and vascular cells, assures sufficient blood supply to active brain regions. Astrocytes, vascular smooth muscle cells, and pericytes are important players within the gliovascular unit modulating vessel diameters. While the importance of the gliovascular unit and the signals involved in regulating local blood flow to match neuronal activity is now well recognized, surprisingly little is known about this interface in disease. Alzheimer's disease is associated with reduced cerebral blood flow. Here, we studied how the gliovascular unit is affected in a mouse model of Alzheimer's disease, using a combination of ex vivo and in vivo imaging approaches. We specifically labelled vascular amyloid in living mice using the dye methoxy-XO4. We elicited vessel responses ex vivo using either pharmacological stimuli or cell-specific calcium uncaging in vascular smooth muscle cells or astrocytes. Multi-photon in vivo imaging through a cranial window allowed us to complement our ex vivo data in the presence of blood flow after label-free optical activation of vascular smooth muscle cells in the intact brain. We found that vascular amyloid deposits separated astrocyte end-feet from the endothelial vessel wall. High-resolution 3D images demonstrated that vascular amyloid developed in ring-like structures around the vessel circumference, essentially forming a rigid cast. Where vascular amyloid was present, stimulation of astrocytes or vascular smooth muscle cells via ex vivo Ca(2+) uncaging or in vivo optical activation produced only poor vascular responses. Strikingly, vessel segments that were unaffected by vascular amyloid responded to the same extent as vessels from age-matched control animals. We conclude that while astrocytes can still release vasoactive substances, vascular amyloid deposits render blood vessels rigid and reduce the dynamic range of affected vessel segments. These results demonstrate a mechanism that could account in part for the reduction in cerebral blood flow in patients with Alzheimer's disease.media-1vid110.1093/brain/awv327_video_abstractawv327_video_abstract.
- Subjects :
- Male
Pathology
medicine.medical_specialty
Vascular smooth muscle
Mice, Transgenic
Plaque, Amyloid
Biology
Muscle, Smooth, Vascular
Amyloid beta-Protein Precursor
Mice
Alzheimer Disease
In vivo
medicine
Animals
Humans
Amyloidosis
Brain
Original Articles
Blood flow
medicine.disease
Disease Models, Animal
medicine.anatomical_structure
Cerebral blood flow
Astrocytes
Neurology (clinical)
Alzheimer's disease
Ex vivo
Astrocyte
Subjects
Details
- ISSN :
- 14602156 and 00068950
- Volume :
- 138
- Database :
- OpenAIRE
- Journal :
- Brain
- Accession number :
- edsair.doi.dedup.....66261d544e53dc91e1a08b84c9481956
- Full Text :
- https://doi.org/10.1093/brain/awv327