Back to Search Start Over

Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability

Authors :
Gilbert de Murcia
Maria A. Blasco
Josiane Ménissier-de Murcia
Enrique Samper
Eva González-Suárez
Juan C. Cigudosa
Fermín A. Goytisolo
Source :
The Journal of Cell Biology
Publication Year :
2001

Abstract

Poly(ADP-ribose) polymerase (PARP)-1, a detector of single-strand breaks, plays a key role in the cellular response to DNA damage. PARP-1–deficient mice are hypersensitive to genotoxic agents and display genomic instability due to a DNA repair defect in the base excision repair pathway. A previous report suggested that PARP-1–deficient mice also had a severe telomeric dysfunction consisting of telomere shortening and increased end-to-end fusions (d'Adda di Fagagna, F., M.P. Hande, W.-M. Tong, P.M. Lansdorp, Z.-Q. Wang, and S.P. Jackson. 1999. Nat. Genet. 23:76–80). In contrast to that, and using a panoply of techniques, including quantitative telomeric (Q)-FISH, we did not find significant differences in telomere length between wild-type and PARP-1−/− littermate mice or PARP-1−/− primary cells. Similarly, there were no differences in the length of the G-strand overhang. Q-FISH and spectral karyotyping analyses of primary PARP-1−/− cells showed a frequency of 2 end-to-end fusions per 100 metaphases, much lower than that described previously (d'Adda di Fagagna et al., 1999). This low frequency of end-to-end fusions in PARP-1−/− primary cells is accordant with the absence of severe proliferative defects in PARP-1−/− mice. The results presented here indicate that PARP-1 does not play a major role in regulating telomere length or in telomeric end capping, and the chromosomal instability of PARP-1−/− primary cells can be explained by the repair defect associated to PARP-1 deficiency. Finally, no interaction between PARP-1 and the telomerase reverse transcriptase subunit, Tert, was found using the two-hybrid assay.

Details

ISSN :
00219525
Volume :
154
Issue :
1
Database :
OpenAIRE
Journal :
The Journal of cell biology
Accession number :
edsair.doi.dedup.....66bacd3318451e688ff04565b52391fc