Back to Search Start Over

Linear and nonlinear optical responses in the chiral multifold semimetal RhSi

Authors :
Zhuoliang Ni
Adolfo G. Grushin
Jörn W. F. Venderbos
Kaustuv Manna
Liang Wu
Bing Xu
Christian Bernhard
Yu Shrike Zhang
F. de Juan
M. A. Sanchez-Martinez
Claudia Felser
University of Pennsylvania [Philadelphia]
University of Fribourg
Théorie de la Matière Condensée (TMC)
Institut Néel (NEEL)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Max Planck Institute for Chemical Physics of Solids (CPfS)
Max-Planck-Gesellschaft
Massachusetts Institute of Technology (MIT)
Drexel University
Donostia International Physics Center - DIPC (SPAIN)
Donostia International Physics Center (DIPC)
University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU)-University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU)
Source :
npj Quantum Materials, npj Qunatum Materials, Npj Quantum Materials, Npj Quantum Materials, Nature publishing, 2020, 5, pp.96. ⟨10.1038/s41535-020-00298-y⟩, npj Quantum Materials, Vol 5, Iss 1, Pp 1-10 (2020)
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

Chiral topological semimetals are materials that break both inversion and mirror symmetries. They host interesting phenomena such as the quantized circular photogalvanic effect (CPGE) and the chiral magnetic effect. In this work, we report a comprehensive theoretical and experimental analysis of the linear and non-linear optical responses of the chiral topological semimetal RhSi, which is known to host multifold fermions. We show that the characteristic features of the optical conductivity, which display two distinct quasi-linear regimes above and below 0.4 eV, can be linked to excitations of different kinds of multifold fermions. The characteristic features of the CPGE, which displays a sign change at 0.4 eV and a large non-quantized response peak of around 160 $\mu \textrm{A V}^{-2}$ at 0.7 eV, are explained by assuming that the chemical potential crosses a flat hole band at the Brillouin zone center. Our theory predicts that, in order to observe a quantized CPGE in RhSi, it is necessary to increase the chemical potential as well as the quasiparticle lifetime. More broadly our methodology, especially the development of the broadband terahertz emission spectroscopy, could be widely applied to study photo-galvanic effects in noncentrosymmetric materials and in topological insulators in a contact-less way and accelerate the technological development of efficient infrared detectors based on topological semimetals.<br />Comment: Accepted in npj Quantum Materials; Abstract updated

Details

ISSN :
23974648
Database :
OpenAIRE
Journal :
npj Quantum Materials, npj Qunatum Materials, Npj Quantum Materials, Npj Quantum Materials, Nature publishing, 2020, 5, pp.96. ⟨10.1038/s41535-020-00298-y⟩, npj Quantum Materials, Vol 5, Iss 1, Pp 1-10 (2020)
Accession number :
edsair.doi.dedup.....66c197bcc4769cd5d662c1161570060f
Full Text :
https://doi.org/10.48550/arxiv.2005.13473