Back to Search Start Over

Radiation Pattern Prediction for Metasurfaces: A Neural Network-Based Approach

Authors :
Eduard Alarcon
Hamidreza Taghvaee
Albert Cabellos-Aparicio
Sergi Abadal
Xavier Timoneda
Akshay Jain
Christos Liaskos
Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
Universitat Politècnica de Catalunya. WNG - Grup de xarxes sense fils
Universitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
Universitat Politècnica de Catalunya. EPIC - Energy Processing and Integrated Circuits
Source :
Sensors (Basel, Switzerland), Sensors, Volume 21, Issue 8, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Sensors, Vol 21, Iss 2765, p 2765 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

As the current standardization for the 5G networks nears completion, work towards understanding the potential technologies for the 6G wireless networks is already underway. One of these potential technologies for the 6G networks is reconfigurable intelligent surfaces. They offer unprecedented degrees of freedom towards engineering the wireless channel, i.e., the ability to modify the characteristics of the channel whenever and however required. Nevertheless, such properties demand that the response of the associated metasurface is well understood under all possible operational conditions. While an understanding of the radiation pattern characteristics can be obtained through either analytical models or full-wave simulations, they suffer from inaccuracy and extremely high computational complexity, respectively. Hence, in this paper, we propose a neural network-based approach that enables a fast and accurate characterization of the metasurface response. We analyze multiple scenarios and demonstrate the capabilities and utility of the proposed methodology. Concretely, we show that this method can learn and predict the parameters governing the reflected wave radiation pattern with an accuracy of a full-wave simulation (98.8–99.8%) and the time and computational complexity of an analytical model. The aforementioned result and methodology will be of specific importance for the design, fault tolerance, and maintenance of the thousands of reconfigurable intelligent surfaces that will be deployed in the 6G network environment. This research was funded by the European Commission grant number H2020-FETOPEN736876 (VISORSURF) and by ICREA under the ICREA Academia program.

Details

ISSN :
14248220
Volume :
21
Database :
OpenAIRE
Journal :
Sensors
Accession number :
edsair.doi.dedup.....66e5cd54f6a7805f5f1b3be0796ddb24
Full Text :
https://doi.org/10.3390/s21082765