Back to Search
Start Over
AsnB Mediates Amidation of Meso-Diaminopimelic Acid Residues in the Peptidoglycan of Listeria monocytogenes and Affects Bacterial Surface Properties and Host Cell Invasion
- Source :
- Frontiers in Microbiology, Vol 12 (2021), Frontiers in Microbiology
- Publication Year :
- 2021
- Publisher :
- FRONTIERS MEDIA SA, 2021.
-
Abstract
- A mutant of Listeria monocytogenes ScottA with a transposon in the 5' untranslated region of the asnB gene was identified to be hypersensitive to the antimicrobial t-cinnamaldehyde. Here, we report the functional characterization of AsnB in peptidoglycan (PG) modification and intracellular infection. While AsnB of Listeria is annotated as a glutamine-dependent asparagine synthase, sequence alignment showed that this protein is closely related to a subset of homologs that catalyze the amidation of meso-diaminopimelic acid (mDAP) residues in the peptidoglycan of other bacterial species. Structural analysis of peptidoglycan from an asnB mutant, compared to that of isogenic wild-type (WT) and complemented mutant strains, confirmed that AsnB mediates mDAP amidation in L. monocytogenes. Deficiency in mDAP amidation caused several peptidoglycan- and cell surface-related phenotypes in the asnB mutant, including formation of shorter but thicker cells, susceptibility to lysozyme, loss of flagellation and motility, and a strong reduction in biofilm formation. In addition, the mutant showed reduced invasion of human epithelial JEG-3 and Caco-2 cells. Analysis by immunofluorescence microscopy revealed that asnB inactivation abrogated the proper display at the listerial surface of the invasion protein InlA, which normally gets cross-linked to mDAP via its LPXTG motif. Together, this work shows that AsnB of L. monocytogenes, like several of its homologs in related Gram-positive bacteria, mediates the amidation of mDAP residues in the peptidoglycan and, in this way, affects several cell wall and cell surface-related properties. It also for the first time implicates the amidation of peptidoglycan mDAP residues in cell wall anchoring of InlA and in bacterial virulence.
- Subjects :
- Microbiology (medical)
lysozyme sensitivity
Mutant
Virulence
Sequence alignment
medicine.disease_cause
Microbiology
peptidoglycan modification
Cell wall
chemistry.chemical_compound
Listeria monocytogenes
meso-diaminopimelic acid
medicine
host cell invasion
Original Research
biology
biology.organism_classification
QR1-502
virulence
chemistry
Biochemistry
motility
biofilm formation
Peptidoglycan
Lysozyme
Bacteria
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Frontiers in Microbiology, Vol 12 (2021), Frontiers in Microbiology
- Accession number :
- edsair.doi.dedup.....6723784d405b66c6c9e40e2a8c99d831