Back to Search Start Over

O-GlcNAcylation-mediated degradation of FBXL2 stabilizes FOXM1 to induce cancer progression

Authors :
Yasuhiro Ueda
Toshihisa Takeuchi
Michio Asahi
Kazuhide Higuchi
Kazumasa Moriwaki
Source :
Biochemical and Biophysical Research Communications. 521:632-638
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

O-GlcNAcylation is a dynamic and reversible post-translational modification of cytonuclear molecules that regulates cellular signaling. Elevated O-GlcNAcylation is a general property of cancer and plays a critical role in cancer progression. We previously showed that the expression of FOXM1, a critical oncogenic transcription factor widely overexpressed in solid tumors, was elevated in MKN45 cells, a human gastric cancer cell line, by the O-GlcNAcase inhibitor Thiamet G (TMG), which induces augmented O-GlcNAcylation. Here, we identified FBXL2 E3 ubiquitin ligase as a new target of O-GlcNAcylation. Consistent with the results in MKN45 cells, FOXM1 expression was increased, accompanied by its decreased ubiquitination and degradation by TMG in the other gastric cancer cell lines, including NUGC-3 cells. We found that FBXL2 ubiquitinated FOXM1, and the interaction with FBXL2 and ubiquitination of FOXM1 were reduced by TMG in NUGC-3 cells. Interestingly, FBXL2 was also ubiquitinated, which was promoted by TMG in the cells. Moreover, FOXM1 expression and cell proliferation were reduced in FBXL2-induced NUGC-3 cells, and the reductions were attenuated by TMG, indicating that FOXM1 was stabilized by O-GlcNAcylation-mediated degradation of FBXL2 to induce cancer progression. These data suggest that elevated O-GlcNAcylation contributes to cancer progression by suppressing FBXL2-mediated degradation of FOXM1.

Details

ISSN :
0006291X
Volume :
521
Database :
OpenAIRE
Journal :
Biochemical and Biophysical Research Communications
Accession number :
edsair.doi.dedup.....6729db92eba4d770a698dd9e7ed49f43