Back to Search
Start Over
Bacterial formate hydrogenlyase complex
- Publication Year :
- 2014
- Publisher :
- National Academy of Sciences, 2014.
-
Abstract
- Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts.
- Subjects :
- Iron-Sulfur Proteins
Hydrogenase
Biology
Quinone oxidoreductase
medicine.disease_cause
Formate oxidation
Catalysis
chemistry.chemical_compound
Multienzyme Complexes
medicine
Escherichia coli
Biohydrogen
Formate
Integral membrane protein
chemistry.chemical_classification
Multidisciplinary
Escherichia coli Proteins
Formate Dehydrogenases
Enzyme
chemistry
Biochemistry
PNAS Plus
Multiprotein Complexes
Hydrogen
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....678ea1d64b6e7cbc9e89f6b02b6b7602