Back to Search
Start Over
Finiteness results concerning algebraic power series
- Source :
- Journal of Pure and Applied Algebra, Journal of Pure and Applied Algebra, Elsevier, 2021, 225 (6), pp.106627. ⟨10.1016/j.jpaa.2020.106627⟩
- Publication Year :
- 2020
-
Abstract
- We construct an explicit filtration of the ring of algebraic power series by finite dimensional constructible sets, measuring the complexity of these series. As an application, we give a bound on the dimension of the set of algebraic power series of bounded complexity lying on an algebraic variety defined over the field of power series.<br />12 pages
- Subjects :
- Power series
Pure mathematics
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
Field (mathematics)
Commutative Algebra (math.AC)
01 natural sciences
Mathematics - Algebraic Geometry
0103 physical sciences
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
FOS: Mathematics
Filtration (mathematics)
Number Theory (math.NT)
0101 mathematics
Algebraic number
Algebraic Geometry (math.AG)
ComputingMilieux_MISCELLANEOUS
Mathematics
Ring (mathematics)
Algebra and Number Theory
Series (mathematics)
Mathematics - Number Theory
010102 general mathematics
Algebraic variety
Mathematics - Commutative Algebra
Bounded function
010307 mathematical physics
Subjects
Details
- Language :
- English
- ISSN :
- 00224049
- Database :
- OpenAIRE
- Journal :
- Journal of Pure and Applied Algebra, Journal of Pure and Applied Algebra, Elsevier, 2021, 225 (6), pp.106627. ⟨10.1016/j.jpaa.2020.106627⟩
- Accession number :
- edsair.doi.dedup.....67c8612077a9cbe23a02a27bb0ba7177
- Full Text :
- https://doi.org/10.1016/j.jpaa.2020.106627⟩