Back to Search Start Over

Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae

Authors :
Yuan Hung Lo
Qiaoling Jin
Jianwei Miao
Youssef S. G. Nashed
Alan Pryor
Marcus Gallagher-Jones
Stefan Vogt
Young-Pyo Hong
Chris Jacobsen
Si Chen
Junjing Deng
Source :
Science Advances
Publication Year :
2018

Abstract

X-ray ptychography and fluorescence imaging reveal 3D elemental composition and ultrastructure in frozen-hydrated green algae.<br />Accurate knowledge of elemental distributions within biological organisms is critical for understanding their cellular roles. The ability to couple this knowledge with overall cellular architecture in three dimensions (3D) deepens our understanding of cellular chemistry. Using a whole, frozen-hydrated Chlamydomonas reinhardtii cell as an example, we report the development of 3D correlative microscopy through a combination of simultaneous cryogenic x-ray ptychography and x-ray fluorescence microscopy. By taking advantage of a recently developed tomographic reconstruction algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE), we produce high-quality 3D maps of the unlabeled alga’s cellular ultrastructure and elemental distributions within the cell. We demonstrate GENFIRE’s ability to outperform conventional tomography algorithms and to further improve the reconstruction quality by refining the experimentally intended tomographic angles. As this method continues to advance with brighter coherent light sources and more efficient data handling, we expect correlative 3D x-ray fluorescence and ptychographic tomography to be a powerful tool for probing a wide range of frozen-hydrated biological specimens, ranging from small prokaryotes such as bacteria, algae, and parasites to large eukaryotes such as mammalian cells, with applications that include understanding cellular responses to environmental stimuli and cell-to-cell interactions.

Details

ISSN :
23752548
Volume :
4
Issue :
11
Database :
OpenAIRE
Journal :
Science advances
Accession number :
edsair.doi.dedup.....67fb3cb1f30a4e4231099d927bc200a1