Back to Search Start Over

Analysis of fks1 and fks2 gene mutations in invasive Candida glabrata strains from Pakistan

Authors :
Saba Memon
Najia Karim Ghanchi
Urooj Zafar
Joveria Farooqi
Sadaf Zaka
Kauser Jabeen
Source :
Mycoses. 66:52-58
Publication Year :
2022
Publisher :
Wiley, 2022.

Abstract

The gradual increase in caspofungin usage in Pakistan raises a concern of emergence of echinocandin resistance in local Candida glabrata strains. We sequenced and determined mutations in fks1 and fks2 genes in invasive Candida glabrata strains from Pakistan.Thirty-six invasive C. glabrata strains were selected with median (min-max) minimum inhibitory concentrations (MICs) of 0.06 (0.015-0.25) mg/L for caspofungin, 0.015 (0.008-0.06) mg/L for micafungin and 0.06 (0.015-0.12) mg/L for anidulafungin. fks1 and fks2 gene fragments were sequenced using Sanger methodology. Sequences were analysed with MEGA-6 software to identify specific single-nucleotide polymorphisms (SNP) against wild-type sequences of C. glabrata.In fks1 gene, non-synonymous mutation D632H was observed in one isolate with caspofungin MIC of 0.25 mg/L. Synonymous mutation at position A742 was observed in 26/36 (72%) of the isolates. 34/36 (94.5%) isolates analysed for fks2 gene were observed as wild type. A novel non-synonymous mutation at I661T was observed in fks2 gene in one isolate with caspofungin MIC of 0.12 mg/L and anidulafungin and micafungin MIC of 0.06 and 0.015 mg/L, respectively. Novel fks2 synonymous mutations at position T647, K652 and I706 were observed in 16/36 (44%), 25/36 (69%) and 23/36 (63%) isolates, respectively.Low frequencies of both non-synonymous and synonymous polymorphisms were observed in invasive C. glabrata strains. Since S663P in fks2 gene is associated with caspofungin resistance, a novel mutation at 661 codon identified in our study needs correlation with treatment outcome data and mandates periodic genomic surveillance.

Details

ISSN :
14390507 and 09337407
Volume :
66
Database :
OpenAIRE
Journal :
Mycoses
Accession number :
edsair.doi.dedup.....681717346966e5a904f087830584a5ea