Back to Search
Start Over
Span morphing using the GNATSpar wing
- Source :
- Aerospace Science and Technology. 53:38-46
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- Rigid wings usually fly at sub-optimal conditions generating unnecessary aerodynamic loses represented in flight time, fuel consumption, and unfavourable operational characteristics. High aspect ratio wings have good range and fuel efficiency, but lack manoeuvrability. On the other hand, low aspect ratio wings fly faster and are more manoeuvrable, but have poor aerodynamic performance. Span morphing technology allows integrating both features in a single wing design and allows continuously adjusting the wingspan to match the instantaneous flight conditions and mission objectives. This paper develops, a novel span morphing concept, the Gear driveN Autonomous Twin Spar (GNATSpar) for a mini-UAV. The GNATSpar can be used to achieve span extensions up to 100% but for demonstration purposes it is used here to achieve span extensions up to 20% to reduce induced drag and increase flight endurance. The GNATSpar is superior to conventional telescopic and articulated structures as it uses the space available in the opposite sides of the wing instead of relying on overlapping structures and bearings. In addition, it has a self-locking actuation mechanism due to the low lead angle of the driving worm gear. Following the preliminary aero-structural sizing of the concept, a physical prototype is developed and tested in the 7 ′ × 5 ′ wind-tunnel at the University of Southampton. Finally, benefits and drawbacks of the design are highlighted and analysed.
- Subjects :
- Worm drive
Engineering
business.product_category
Wing
Lift-induced drag
business.industry
Aerospace Engineering
Mechanical engineering
02 engineering and technology
Aerodynamics
Span (engineering)
01 natural sciences
010305 fluids & plasmas
Morphing
020303 mechanical engineering & transports
0203 mechanical engineering
Control theory
Range (aeronautics)
0103 physical sciences
business
Wingspan
Subjects
Details
- ISSN :
- 12709638
- Volume :
- 53
- Database :
- OpenAIRE
- Journal :
- Aerospace Science and Technology
- Accession number :
- edsair.doi.dedup.....6842c55e4efc5e6c6774fff2efe05638
- Full Text :
- https://doi.org/10.1016/j.ast.2016.03.009