Back to Search Start Over

A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations

Authors :
Christophe Geuzaine
Bertrand Thierry
Xavier Antoine
M. El Bouajaji
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Applied and Computational Electromagnetics [Liège] (ACE)
Université de Liège-Fonds de la Recherche Scientifique [FNRS]-Institut Montefiore - Département d'Electricité, Electronique et Informatique (Liège)
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Computational Physics, Journal of Computational Physics, 2015, 294 (1), pp.38-57. ⟨10.1016/j.jcp.2015.03.041⟩, Journal of Computational Physics, Elsevier, 2015, 294 (1), pp.38-57. ⟨10.1016/j.jcp.2015.03.041⟩
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

International audience; This paper presents a new non-overlapping domain decomposition method for the time harmonic Maxwell's equations, whose effective convergence is quasi-optimal. These improved properties result from a combination of an appropriate choice of transmission conditions and a suitable approximation of the Magnetic-to-Electric operator. A convergence theorem of the algorithm is established and numerical results validating the new approach are presented.

Details

ISSN :
00219991 and 10902716
Volume :
294
Database :
OpenAIRE
Journal :
Journal of Computational Physics
Accession number :
edsair.doi.dedup.....6863b945367c4d0200d13da2485bd4af
Full Text :
https://doi.org/10.1016/j.jcp.2015.03.041