Back to Search
Start Over
Fabrication and Characterization of Electrospun Poly(acrylonitrile-co-Methyl Acrylate)/Lignin Nanofibers: Effects of Lignin Type and Total Polymer Concentration
- Source :
- Polymers, Volume 13, Issue 7, Polymers, Vol 13, Iss 992, p 992 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Lignin macromolecules are potential precursor materials for producing electrospun nanofibers for composite applications. However, little is known about the effect of lignin type and blend ratios with synthetic polymers. This study analyzed blends of poly(acrylonitrile-co-methyl acrylate) (PAN-MA) with two types of commercially available lignin, low sulfonate (LSL) and alkali, kraft lignin (AL), in DMF solvent. The electrospinning and polymer blend solution conditions were optimized to produce thermally stable, smooth lignin-based nanofibers with total polymer content of up to 20 wt % in solution and a 50/50 blend weight ratio. Microscopy studies revealed that AL blends possess good solubility, miscibility, and dispersibility compared to LSL blends. Despite the lignin content or type, rheological studies demonstrated that PAN-MA concentration in solution dictated the blend’s viscosity. Smooth electrospun nanofibers were fabricated using AL depending upon the total polymer content and blend ratio. AL’s addition to PAN-MA did not affect the glass transition or degradation temperatures of the nanofibers compared to neat PAN-MA. We confirmed the presence of each lignin type within PAN-MA nanofibers through infrared spectroscopy. PAN-MA/AL nanofibers possessed similar morphological and thermal properties as PAN-MA<br />thus, these lignin-based nanofibers can replace PAN in future applications, including production of carbon fibers and supercapacitors.
- Subjects :
- low sulfonate lignin
Polymers and Plastics
alkali
lignin-based nanofibers
poly(acrylonitrile-co-methyl acrylate)
02 engineering and technology
General Chemistry
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
lcsh:QD241-441
lcsh:Organic chemistry
nanofibers
modulated DSC
0210 nano-technology
electrospinning
kraft lignin
Subjects
Details
- ISSN :
- 20734360
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Polymers
- Accession number :
- edsair.doi.dedup.....687cb940874ebe6660c06a02f34b8244
- Full Text :
- https://doi.org/10.3390/polym13070992