Back to Search Start Over

Predicting the outcome of ankylosing spondylitis therapy

Authors :
Juergen Braun
Bert Vander Cruyssen
Mahboob Rahman
Yanxin Wang
Nathan Vastesaeger
Désirée van der Heijde
Piet Geusens
Benjamin Hsu
Atul Deodhar
Joachim Sieper
Eduardo Collantes
Robert D. Inman
Ben A. C. Dijkmans
Interne Geneeskunde
RS: CAPHRI School for Public Health and Primary Care
Rheumatology
MOVE Research Institute
CCA - Innovative therapy
Source :
Annals of the Rheumatic Diseases, 70(6), 973-981. BMJ Publishing Group, Annals of the Rheumatic Diseases, Annals of the Rheumatic Diseases, 70(6), 973-981, Vastesaeger, N, van der Heijde, D, Inman, R D, Wang, Y X, Deodhar, A, Hsu, B, Rahman, M U, Dijkmans, B A C, Geusens, P, Vander Cruyssen, B, Collantes, E, Sieper, J & von Braun, J 2011, ' Predicting the outcome of ankylosing spondylitis therapy ', Annals of the Rheumatic Diseases, vol. 70, no. 6, pp. 973-981 . https://doi.org/10.1136/ard.2010.147744
Publication Year :
2011

Abstract

ObjectivesTo create a model that provides a potential basis for candidate selection for anti-tumour necrosis factor (TNF) treatment by predicting future outcomes relative to the current disease profile of individual patients with ankylosing spondylitis (AS).MethodsASSERT and GO–RAISE trial data (n=635) were analysed to identify baseline predictors for various disease-state and disease-activity outcome instruments in AS. Univariate, multivariate, receiver operator characteristic and correlation analyses were performed to select final predictors. Their associations with outcomes were explored. Matrix and algorithm-based prediction models were created using logistic and linear regression, and their accuracies were compared. Numbers needed to treat were calculated to compare the effect size of anti-TNF therapy between the AS matrix subpopulations. Data from registry populations were applied to study how a daily practice AS population is distributed over the prediction model.ResultsAge, Bath ankylosing spondylitis functional index (BASFI) score, enthesitis, therapy, C-reactive protein (CRP) and HLA-B27 genotype were identified as predictors. Their associations with each outcome instrument varied. However, the combination of these factors enabled adequate prediction of each outcome studied. The matrix model predicted outcomes as well as algorithm-based models and enabled direct comparison of the effect size of anti-TNF treatment outcome in various subpopulations. The trial populations reflected the daily practice AS population.ConclusionAge, BASFI, enthesitis, therapy, CRP and HLA-B27 were associated with outcomes in AS. Their combined use enables adequate prediction of outcome resulting from anti-TNF and conventional therapy in various AS subpopulations. This may help guide clinicians in making treatment decisions in daily practice.

Details

ISSN :
00034967
Volume :
70
Issue :
6
Database :
OpenAIRE
Journal :
Annals of the Rheumatic Diseases
Accession number :
edsair.doi.dedup.....691a934b1ae13da58ef2bce7da19a167
Full Text :
https://doi.org/10.1136/ard.2010.147744