Back to Search Start Over

Impaired NO-mediated vasodilation with increased superoxide but robust EDHF function in right ventricular arterial microvessels of pulmonary hypertensive rats

Authors :
Kousuke Endo
Keiji Naruse
Tatsuo Iwasaki
Satoshi Mohri
Masanori Hirota
Toyotaka Yada
Juichiro Shimizu
Taro Morimoto
Yousuke Inai
Fumihiko Kajiya
Yasuo Ogasawara
Masahito Kajiya
Takahiko Kiyooka
Tohru Ohe
Source :
American Journal of Physiology-Heart and Circulatory Physiology. 292:H2737-H2744
Publication Year :
2007
Publisher :
American Physiological Society, 2007.

Abstract

Pulmonary hypertension (PH) causes right ventricular (RV) hypertrophy and, according to the extent of pressure overload, eventual heart failure. We tested the hypothesis that the mechanical stress in PH-RV impairs the vasoreactivity of the RV coronary microvessels of different sizes with increased superoxide levels. Five-week-old male Sprague-Dawley rats were injected with monocrotaline ( n = 126) to induce PH or with saline as controls ( n = 114). After 3 wk, coronary arterioles (diameter = 30–100 μm) and small arteries (diameter = 100–200 μm) in the RV were visualized using intravital videomicroscopy. We evaluated ACh-induced vasodilation alone, in the presence of Nω-nitro-l-arginine methyl ester (l-NAME), in the presence of tetraethylammonium (TEA) or catalase with or without l-NAME, and in the presence of SOD. The degree of suppression in vasodilation by l-NAME and TEA was used as indexes of the contributions of endothelial nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), respectively. In PH rats, ACh-induced vasodilation was significantly attenuated in both arterioles and small aretries, especially in arterioles. This decreased vasodilation was largely attributable to reduced NO-mediated vasoreactivity, whereas the EDHF-mediated vasodilation was relatively robust. The suppressive effect on arteriolar vasodilation by catalase was similar to TEA in both groups. Superoxide, as measured by lucigenin chemiluminescence, was significantly elevated in the RV tissues in PH. SOD significantly ameliorated the impairment of ACh-induced vasodilation in PH. Robust EDHF function will play a protective role in preserving coronary microvascular homeostasis in the event of NO dysfunction with increased superoxide levels.

Details

ISSN :
15221539 and 03636135
Volume :
292
Database :
OpenAIRE
Journal :
American Journal of Physiology-Heart and Circulatory Physiology
Accession number :
edsair.doi.dedup.....695074cf1ed18ebec9e25fb533b11063