Back to Search
Start Over
Silencing and enhancement of second-harmonic generation in optical gap antennas
- Source :
- Optics Express, Optics Express, Optical Society of America-OSA Publishing, 2012, 20, pp.10498. ⟨10.1364/OE.20.010498⟩, Optics Express, Optical Society of America-OSA Publishing, 2012, 20 (10), pp.10498. ⟨10.1364/OE.20.010498⟩, Optics Express, Optical Society of America, 2012, 20 (10), pp.10498. 〈10.1364/OE.20.010498〉, Optics Express, Optical Society of America, 2012, 20, pp.10498. 〈10.1364/OE.20.010498〉, Optics Express, 2012, 20 (10), pp.10498-10508. ⟨10.1364/OE.20.010498⟩, ResearcherID
- Publication Year :
- 2012
- Publisher :
- HAL CCSD, 2012.
-
Abstract
- International audience; Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a simple approach to restore and amplify the second-harmonic signal by changing the manner in which electrically-connected optical antennas are interacting in the charge-transfer plasmon regime. Our observations provide critical design rules for realizing optimal structures that are essential for a broad variety of nonlinear surface-enhanced characterizations and for realizing the next generation of electrically-driven optical antennas.
- Subjects :
- Electromagnetic field
Optics and Photonics
Surface Properties
Metal Nanoparticles
Electrons
02 engineering and technology
01 natural sciences
Signal
Optics
Electromagnetic Fields
0103 physical sciences
Materials Testing
Nanotechnology
Scattering, Radiation
Computer Simulation
Surface plasmon resonance
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
010306 general physics
Local field
Plasmon
Physics
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]
business.industry
Electromagnetic Radiation
Second-harmonic generation
Equipment Design
Models, Theoretical
021001 nanoscience & nanotechnology
Atomic and Molecular Physics, and Optics
Finite element method
Nonlinear system
Microscopy, Electron, Scanning
Optoelectronics
[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
Gold
0210 nano-technology
business
Subjects
Details
- Language :
- English
- ISSN :
- 10944087
- Database :
- OpenAIRE
- Journal :
- Optics Express, Optics Express, Optical Society of America-OSA Publishing, 2012, 20, pp.10498. ⟨10.1364/OE.20.010498⟩, Optics Express, Optical Society of America-OSA Publishing, 2012, 20 (10), pp.10498. ⟨10.1364/OE.20.010498⟩, Optics Express, Optical Society of America, 2012, 20 (10), pp.10498. 〈10.1364/OE.20.010498〉, Optics Express, Optical Society of America, 2012, 20, pp.10498. 〈10.1364/OE.20.010498〉, Optics Express, 2012, 20 (10), pp.10498-10508. ⟨10.1364/OE.20.010498⟩, ResearcherID
- Accession number :
- edsair.doi.dedup.....697a6138cd9775ecd737d8987084fbef
- Full Text :
- https://doi.org/10.1364/OE.20.010498⟩