Back to Search Start Over

Tetrahydrobiopterin, a Critical Factor in the Production and Role of Nitric Oxide in Mast Cells

Authors :
Christian Hesslinger
Mark Gilchrist
A. Dean Befus
Source :
Journal of Biological Chemistry. 278:50607-50614
Publication Year :
2003
Publisher :
Elsevier BV, 2003.

Abstract

Mast cells (MC) are biologically potent, ubiquitously distributed immune cells with fundamental roles in host integrity and disease. MC diversity and function is regulated by exogenous nitric oxide; however, the production and function of endogenously produced NO in MC is enigmatic. We used rat peritoneal MC (PMC) as an in vivo model to examine intracellular NO production. Live cell confocal analysis of PMC using the NO-sensitive probe diaminofluorescein showed distinct patterns of intracellular NO formation with either antigen (Ag)/IgE (short term) or interferon-gamma (IFN-gamma) (long term). Ag/IgE-induced NO production is preceded by increased intracellular Ca2+, implying constitutive nitric-oxide synthase (NOS) activity. NO formation inhibits MC degranulation. NOS has obligate requirements for tetrahydrobiopterin (BH4), a product of GTP-cyclohydrolase I (CHI), IFN-gamma-stimulated PMC increased CHI mRNA, protein, and enzymatic activity, while decreasing CHI feedback regulatory protein mRNA, causing sustained NO production. Treatment with the CHI inhibitor, 2,4-diamino-6-hydroxypyrimidine, inhibited NO in both IFN-gamma and Ag/IgE systems, increasing MC degranulation. Reconstitution with the exogenous BH4 substrate, sepiapterin, restored NO formation and inhibited exocytosis. Thus, Ag/IgE and IFN-gamma induced intracellular NO plays a key role in MC mediator release, and alterations in NOS activity via BH4 availability may be critical to the heterogeneous responsiveness of MC.

Details

ISSN :
00219258
Volume :
278
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....697bb0dc8c5728bcb257ed793f6f63ab
Full Text :
https://doi.org/10.1074/jbc.m307777200