Back to Search Start Over

Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization

Authors :
Tatireddy Subba Reddy
Jonnadula Harikiran
Murali Krishna Enduri
Koduru Hajarathaiah
Sultan Almakdi
Mohammed Alshehri
Quadri Noorulhasan Naveed
Md Habibur Rahman
Source :
Computational Intelligence and Neuroscience.
Publication Year :
2022
Publisher :
Hindawi, 2022.

Abstract

The classification technology of hyperspectral images (HSI) consists of many contiguous spectral bands that are often utilized for a various Earth observation activities, such as surveillance, detection, and identification. The incorporation of both spectral and spatial characteristics is necessary for improved classification accuracy. In the classification of hyperspectral images, deep learning has gained significant traction. This research analyzes how to accurately classify new HSI from limited samples with labels. A novel deep-learning-based categorization based on feature extraction and classification is designed for this purpose. Initial extraction of spectral and spatial information is followed by spectral and spatial information integration to generate fused features. The classification challenge is completed using a compressed synergic deep convolution neural network with Aquila optimization (CSDCNN-AO) model constructed by utilising a novel optimization technique known as the Aquila Optimizer (AO). The HSI, the Kennedy Space Center (KSC), the Indian Pines (IP) dataset, the Houston U (HU) dataset, and the Salinas Scene (SS) dataset are used for experiment assessment. The sequence testing on these four HSI-classified datasets demonstrate that our innovative framework outperforms the conventional technique on common evaluation measures such as average accuracy (AA), overall accuracy (OA), and Kappa coefficient (k). In addition, it significantly reduces training time and computational cost, resulting in enhanced training stability, maximum performance, and remarkable training accuracy.

Details

Language :
English
ISSN :
16875265
Database :
OpenAIRE
Journal :
Computational Intelligence and Neuroscience
Accession number :
edsair.doi.dedup.....69a568b4841d91aea5929d44de630373
Full Text :
https://doi.org/10.1155/2022/6781740