Back to Search
Start Over
Sharp Approximations for the Ramanujan Constant
- Source :
- Constructive Approximation. 51:303-330
- Publication Year :
- 2019
- Publisher :
- Springer Science and Business Media LLC, 2019.
-
Abstract
- In this paper, the authors present sharp approximations in terms of sine function and polynomials for the so-called Ramanujan constant (or the Ramanujan $R$-function) $R(a)$, by showing some monotonicity, concavity and convexity properties of certain combinations defined in terms of $R(a)$, $\sin(\pi a)$ and polynomials. Some properties of the Riemann zeta function and its related special sums are presented, too.<br />Comment: 19 pages
- Subjects :
- Pure mathematics
Mathematics - Complex Variables
Mathematics::General Mathematics
Mathematics::Number Theory
General Mathematics
Numerical analysis
010102 general mathematics
Monotonic function
010103 numerical & computational mathematics
01 natural sciences
Convexity
Ramanujan's sum
Riemann zeta function
Computational Mathematics
symbols.namesake
FOS: Mathematics
symbols
Pi
11M06, 33B15, 33C05, 33F05
Sine
Complex Variables (math.CV)
0101 mathematics
Constant (mathematics)
Analysis
Mathematics
Subjects
Details
- ISSN :
- 14320940 and 01764276
- Volume :
- 51
- Database :
- OpenAIRE
- Journal :
- Constructive Approximation
- Accession number :
- edsair.doi.dedup.....69b45ecef988d58e629fa3ec6d189406
- Full Text :
- https://doi.org/10.1007/s00365-019-09464-3